The controllers for a cyber-physical system may be impacted by sensor measurement cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our group has developed a theory for handling cyberattacks on process sensors. However, sensor and actuator cyberattacks have a different character from one another. Specifically, sensor measurement attacks prevent proper inputs from being applied to the process by manipulating the measurements that the controller receives, so that the control law plays a role in the impact of a given sensor measurement cyberattack on a process. In contrast, actuator signal attacks prevent proper inputs from being applied to a process by bypassing the control law to cause the actuators to apply undesirable control actions. Despite these differences, this manuscript shows that we can extend and combine strategies for handling sensor cyberattacks from our prior work to handle attacks on actuators and to handle cases where sensor and actuator attacks occur at the same time. These strategies for cyberattack-handling and detection are based on the Lyapunov-based economic model predictive control (LEMPC) and nonlinear systems theory. We first review our prior work on sensor measurement cyberattacks, providing several new insights regarding the methods. We then discuss how those methods can be extended to handle attacks on actuator signals and then how the strategies for handling sensor and actuator attacks individually can be combined to produce a strategy that is able to guarantee safety when attacks are not detected, even if both types of attacks are occurring at once. We also demonstrate that the other combinations of the sensor and actuator attack-handling strategies cannot achieve this same effect. Subsequently, we provide a mathematical characterization of the “discoverability” of cyberattacks that enables us to consider the various strategies for cyberattack detection presented in a more general context. We conclude by presenting a reactor example that showcases the aspects of designing LEMPC.
more »
« less
Handling of stealthy sensor and actuator cyberattacks on evolving nonlinear process systems
Abstract Cyberattacks on control systems in the chemical process industries cause concern regarding how they can impact finances, safety, and production levels of companies. A key practical challenge for cyberattack detection and handling using process information is that process behavior evolves over time. Conceivably, changes in process dynamics might cause some detection strategies to flag a change in the dynamics as an attack due to the new data appearing abnormal compared to data from before the dynamics changed. In this work, we utilize several case studies to probe the question of what might be the impacts, benefits, and limitations of cyberattack detection and handling policies when the process dynamics change over time. The goal of this work is to characterize, through simulation studies, characteristics, which might be desirable and undesirable in cyberattack detection and handling procedures when process evolution is inevitable. We demonstrate challenges with cyberattack detection when process dynamics change and subsequently, discuss two concepts for handling attacks—one which utilizes a two‐tier detection strategy in which model reidentification is triggered when it is not clear whether an attack or a change in the process dynamics has occurred, and one in which control signals are injected at intervals by the actuators. We utilize simulations to elucidate characteristics of these strategies and demonstrate that verifiability of attack‐handling methods is key to their implementation (i.e.,ad hoctuning has potential to leave vulnerabilities which an attacker might locate and exploit).
more »
« less
- PAR ID:
- 10449179
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Advanced Manufacturing and Processing
- Volume:
- 3
- Issue:
- 3
- ISSN:
- 2637-403X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work focuses on the problem of enhancing cyberattack detection capabilities in process control systems subject to multiplicative cyberattacks. First, the relationship between closed-loop stability and attack detectability with respect to a class of residual-based detection schemes is rigorously analyzed. The results are used to identify a set of controller parameters (called "attack-sensitive" controller parameters) under which an attack can destabilize the closed-loop system. The selection of attack-sensitive controller parameters can enhance the ability to detect attacks, but can also degrade the performance of the attack-free closed-loop system. To balance this trade-off, a novel active attack detection methodology employing controller parameter switching between the nominal controller parameters (chosen on the basis of standard control design criteria) and the attack-sensitive controller parameters, is developed. The proposed methodology is applied to a chemical process example to demonstrate its ability to detect multiplicative sensor-controller communication link attacks.more » « less
-
Abstract This paper addresses the cybersecurity of hierarchical control of AC microgrids with distributed secondary control. The false data injection (FDI) cyberattack is assumed to alter the operating frequency of inverter‐based distributed generators (DGs) in an islanded microgrid. For the microgrids consisting of the grid‐forming inverters with the secondary control operating in a distributed manner, the attack on one DG deteriorates not only the corresponding DG but also the other DGs that receive the corrupted information via the distributed communication network. To this end, an FDI attack detection algorithm based on a combination of Gaussian process regression and one‐class support vector machine (OC‐SVM) anomaly detection is introduced. This algorithm is unsupervised in the sense that it does not require labelled abnormal data for training which is difficult to collect. The Gaussian process model predicts the response of the DG, and its prediction error and estimated variances provide input to an OC‐SVM anomaly detector. This algorithm returns enhanced detection performance than the standalone OC‐SVM. The proposed cyberattack detector is trained and tested with the data collected from a 4 DG microgrid test model and is validated in both simulation and hardware‐in‐the‐loop testbeds.more » « less
-
In this work, multiplicative cyberattacks targeting the sensor-controller communication link of a process control system are considered. The interdependence of detectability of an attack with respect to a general class of residual-based detection schemes and the control parameters is characterized. Exploiting this dependence, a controller screening methodology that may be used to incorporate cyberattack detectability into the standard controller design criteria is presented. Using a chemical process example, the application of the controller design screening to a nonlinear process is demonstrated.more » « less
-
A fundamental problem at the intersection of process control and operations is the design of detection schemes monitoring a process for cyberattacks using operational data. Multiplicative false data injection (FDI) attacks modify operational data with a multiplicative factor and could be designed to be detection evading without in-depth process knowledge. In a prior work, we presented a control mode switching strategy that enhances the detection of multiplicative FDI attacks in processes operating at steady state (when process states evolve within a small neighborhood of the steady state). Control mode switching on the attack-free process at steady-state may induce transients and generate false alarms in the detection scheme. To minimize false alarms, we subsequently developed a control mode switch-scheduling condition for processes with an invertible output matrix. In the current work, we utilize a reachable set-based detection scheme and use randomized control mode switches to augment attack detection capabilities. The detection scheme eliminates potential false alarms occurring from control mode switching, even for processes with a non-invertible output matrix, while the randomized switching helps bolster the confidentiality of the switching schedule, preventing the design of a detection-evading “smart” attack. We present two simulation examples to illustrate attack detection without false alarms, and the merits of randomized switching (compared with scheduled switching) for the detection of a smart attack.more » « less
An official website of the United States government
