This work focuses on the problem of enhancing cyberattack detection capabilities in process control systems subject to multiplicative cyberattacks. First, the relationship between closed-loop stability and attack detectability with respect to a class of residual-based detection schemes is rigorously analyzed. The results are used to identify a set of controller parameters (called "attack-sensitive" controller parameters) under which an attack can destabilize the closed-loop system. The selection of attack-sensitive controller parameters can enhance the ability to detect attacks, but can also degrade the performance of the attack-free closed-loop system. To balance this trade-off, a novel active attack detection methodology employing controller parameter switching between the nominal controller parameters (chosen on the basis of standard control design criteria) and the attack-sensitive controller parameters, is developed. The proposed methodology is applied to a chemical process example to demonstrate its ability to detect multiplicative sensor-controller communication link attacks.
more »
« less
Cyberattack detectability-based controller screening: Application to a nonlinear process
In this work, multiplicative cyberattacks targeting the sensor-controller communication link of a process control system are considered. The interdependence of detectability of an attack with respect to a general class of residual-based detection schemes and the control parameters is characterized. Exploiting this dependence, a controller screening methodology that may be used to incorporate cyberattack detectability into the standard controller design criteria is presented. Using a chemical process example, the application of the controller design screening to a nonlinear process is demonstrated.
more »
« less
- Award ID(s):
- 2137281
- PAR ID:
- 10416922
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- 14th International Symposium on Process Systems Engineering
- Volume:
- 49
- Page Range / eLocation ID:
- 1453 - 1458
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of estimating signal attacks injected into the actuators or sensors of control systems, assuming the attack is detectable, i.e., it can be seen at the output. We show that there exists a trade-off between attack rejection and control, and that the estimator design depends on the controller used. We use dual rate sampling to enhance detectability of the attacks and we provide different methods to design the estimator. The first method is by solving a model matching problem subject to causality constraints. The second method exploits dual rate sampling to accurately reconstruct the unknown input. The third method is using a dual rate unknown input observer.We provide conditions on the existence of these estimators, and show that dual rate unknown input observers always exist if the multirate system does not have a zero at 1.more » « less
-
Reliable process control for the laser powder bed fusion process, especially at the melt pool scale, remains an open challenge. One of the reasons for this is the lack of suitable control-oriented models and associated control design strategies. To address this issue, this paper (1) identifies an empirical control-oriented model of geometry-dependent melt pool behavior and (2) experimentally demonstrates melt pool regulation with a feedforward controller for laser power based on this model. First, the study establishes that the melt pool signature increases as the scan lines decrease in length. An empirical model of this behavior is developed and validated on different geometries at varying laser power levels. Second, the model is used to design a line-to-line feedforward controller that provides an optimal laser power sequence for a given geometry. Finally, this controller is validated experimentally and is demonstrated to suppress the in-layer geometry-related melt pool signal deviations for different test geometriesmore » « less
-
Controller design and their software implementations are usually done in isolated design spaces using respective COTS design tools. However, this separation of concerns can lead to long debugging and integration phases. This is because assumptions made about the implementation platform during the design phase—e.g., related to timing—might not hold in practice, thereby leading to unacceptable control performance. In order to address this, several control/architecture co-design techniques have been proposed in the literature. However, their adoption in practice has been hampered by the lack of design flows using commercial tools. To the best of our knowledge, this is the first article that implements such a co-design method using commercially available design tools in an automotive setting, with the aim of minimally disrupting existing design flows practiced in the industry. The goal of such co-design is to jointly determine controller and platform parameters in order to avoid any design-implementation gap , thereby minimizing implementation time testing and debugging. Our setting involves distributed implementations of control algorithms on automotive electronic control units ( ECUs ) communicating via a FlexRay bus. The co-design and the associated toolchain Co-Flex jointly determines controller and FlexRay parameters (that impact signal delays) in order to optimize specified design metrics. Co-Flex seamlessly integrates the modeling and analysis of control systems in MATLAB/Simulink with platform modeling and configuration in SIMTOOLS/SIMTARGET that is used for configuring FlexRay bus parameters. It automates the generation of multiple Pareto-optimal design options with respect to the quality of control and the resource usage, that an engineer can choose from. In this article, we outline a step-by-step software development process based on Co-Flex tools for distributed control applications. While our exposition is automotive specific, this design flow can easily be extended to other domains.more » « less
-
Roll-to-roll(R2R) peeling is an innovative method that transfers flexible electronics and 2D materials from the flexible substrate where they are grown to the end-use substrate. This process enables the full potential of R2R 2D material fabrication methods in a continuous, high-throughput, and environment friendly manner. During the R2R peeling process, the device patterning causes periodic changes in the adhesion energy between the device and substrate. This periodic disturbance can degrade the quality of the final product if not properly controlled. Current control methods used for the R2R peeling process do not explicitly reject the periodic disturbance. It is therefore desirable to develop a controller that is capable of performing periodic disturbance rejection. This paper presents a model-based repetitive controller that integrates a frequency estimation of the disturbance into the R2R peeling control to maintain the optimal peeling process performance. A linear estimator using system identification techniques is employed. The simulation results show that the developed controller achieves better R2R process performance when compared to a conventional model-based controller.more » « less
An official website of the United States government

