There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km 2 of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions.
more »
« less
Designing industrial landscapes for mitigating air pollution with spatially‐explicit techno‐ecological synergy
Abstract Air pollution has posed health and environmental threats since the Industrial Revolution. Technological solutions present major expenses for industry, yet nature's ecosystems also provide pollution uptake. In the pursuit of techno‐ecological sustainable design, this work presents a framework for spatially‐explicit industrial site design that determines where and when ecological restoration should be considered. The framework considers land use changes and identifies the cheapest balance between technological and ecological uptake for industrial landscapes, including the impacts of long term ecological growth dynamics. This work presents the framework's construction along with a case study conducted for a coal‐fired power station in Ohio. The results provide spatial maps of proposed restoration areas, projected savings values, and spatial‐temporal maps that consider annual budget constraints. The results demonstrate a significant sensitivity to land use restoration costs and highlights ecological advantages, like simultaneous uptake of different chemical species.
more »
« less
- Award ID(s):
- 1804943
- PAR ID:
- 10449191
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- AIChE Journal
- Volume:
- 67
- Issue:
- 10
- ISSN:
- 0001-1541
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Sustainable provisioning of energy to society requires consideration of the nexus between food–energy–water (FEW) flows while meeting human needs and respecting nature's capacity to provide goods and services. In this work, we explore the FEW nexus of conventional and techno-ecologically synergistic (TES) systems by evaluating combinations of various technological, agricultural, and ecological strategies from the viewpoints of electricity generation, food production, life cycle water use, carbon footprint, nutrient runoff, corporate profitability, and societal well-being. We evaluate activities related to power generation (coal and gas extraction and use, transportation options, cooling technologies, solar panels, wind turbines), food production (farming with and without tillage), waste utilization (carbon dioxide capture and conversion to hydrocarbons, green hydrogen), and ecological restoration (forests and wetlands). Application of this framework to the Muskingum River watershed in Ohio, U.S.A. indicates that seeking synergies between human and natural systems can provide innovative solutions that improve the FEW nexus while making positive contributions to society with greater respect for nature's limits. We show that the conventional engineering approach of relying only on technological approaches for meeting sustainability objectives can have limited environmental and societal benefits while reducing profitability. In contrast, techno-ecologically synergistic design between agricultural systems and wetlands can reduce nutrient runoff with little compromise in other goals. Additional synergies between farming and photovoltaic systems along with the use of wetlands can further improve the FEW nexus while reducing CO 2 and nutrient emissions, with a relatively small compromise in corporate profitability. These results should motivate further work on innovative TES designs that can provide “win–win” solutions for meeting global energy needs in an environmentally and socially beneficial manner.more » « less
-
Abstract Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentataNutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: −6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: −47.9%, −41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.more » « less
-
With a growing body of literature on the topic of ecosystem service (ES), there is an urgent need to summarize ES research in the context of ecological restoration programs (ERPs) in China and identify knowledge gaps for future directions. We conducted a systematic literature review of articles to examine the use of ES approaches for ERP assessments. Our results showed that previous studies mainly focused on the Shaanxi Province, and more than half of the reviewed studies considered no more than three ES types simultaneously. All ES categories were not covered equally; most of the studies focused on provisioning and regulating services, while cultural services have received little attention. Although regional-scale and short-term assessments dominated the reviewed papers, we suggest that multiple temporal and spatial scales for ERP assessments should be given more attention in future work. Moreover, we highlight that an oversimplified land use/land cover (LULC) categorization scheme may potentially lead to inaccuracies and biases in ESs detection under restoration programs. Based on this review, our findings can guide future ERP assessments by using the ES approach. Meanwhile, given the global LULC change brought by the proliferation of plantations under ERPs, our results are also expected to provide a path forward to assess ESs associated with LULC change globally.more » « less
-
Abstract 1. The Poweshiek skipperling [Oarisma poweshiek(Parker, 1870; Lepidoptera: Hesperiidae)] is a federally endangered butterfly that was historically common in prairies of the upper Midwestern United States and Southern Manitoba, Canada. Rapid declines over the last 20 years have reduced the population numbers to four verified extant sites. The causes of Poweshiek skipperling decline are unknown. 2. We aggregated all known Poweshiek skipperling occurrence records to examine the spatiotemporal patterns of Poweshiek skipperling decline. Ecological niche models were developed for five time frames (1985, 1990, 1995, 2000 and 2005) and three spatial extents (eastern occupied range, western occupied range and total occupied range). We used a backward elimination method to investigate the effects of climate and land use on the ecological niche of Poweshiek skipperling. 3. Predictors of occurrence changed over time and across the geographical extent of Poweshiek skipperling. Land use covariates were retained in east models. In the west and total extent, climate variables contributed the most to model predictive power for the 1985, 1990 and 1995 models; land use variables contributed the most to model predictive power in the 2000 and 2005 models. 4. During the rapid decline in Poweshiek skipperling population numbers occurring at the turn of the century, probability of Poweshiek skipperling presence was being driven by proportion of natural land cover and distance to nearest grassland/wetland. Our results suggest that these land use variables are important landscape‐level variables to consider when developing risk assessments of extant populations and potential reintroduction sites.more » « less
An official website of the United States government
