Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Air pollution has posed health and environmental threats since the Industrial Revolution. Technological solutions present major expenses for industry, yet nature's ecosystems also provide pollution uptake. In the pursuit of techno‐ecological sustainable design, this work presents a framework for spatially‐explicit industrial site design that determines where and when ecological restoration should be considered. The framework considers land use changes and identifies the cheapest balance between technological and ecological uptake for industrial landscapes, including the impacts of long term ecological growth dynamics. This work presents the framework's construction along with a case study conducted for a coal‐fired power station in Ohio. The results provide spatial maps of proposed restoration areas, projected savings values, and spatial‐temporal maps that consider annual budget constraints. The results demonstrate a significant sensitivity to land use restoration costs and highlights ecological advantages, like simultaneous uptake of different chemical species.more » « less
-
Kokossis, Antonis; Georgiadis, Michael C.; Pistikopoulos, Efstratios N. (Ed.)Global goals like “Net-zero”, “Nature-positive”, and “Socially Just” require human activities to reduce emissions, restore nature, and be socially equitable. This work proposes an approach that includes ecological capacity and social justice requirements to guide engineering decisions and designs. We utilize the supply and demand of ecosystem services to identify the safe and just operating space1,2. The ecologically safe space is determined by the multiscale framework of Techno-Ecological Synergy (TES). The degree of overshoot quantifies the absolute environmental sustainability (AES) at the relevant spatial scale3,4. For the socially just space, we calculate a minimum threshold of necessary goods and services to meet basic food, energy, and water5 needs. We demonstrate this approach by a multiobjective supply chain design of Li-battery which minimizes the ecological and social overshoot simultaneously.more » « less
-
null (Ed.)Sustainable provisioning of energy to society requires consideration of the nexus between food–energy–water (FEW) flows while meeting human needs and respecting nature's capacity to provide goods and services. In this work, we explore the FEW nexus of conventional and techno-ecologically synergistic (TES) systems by evaluating combinations of various technological, agricultural, and ecological strategies from the viewpoints of electricity generation, food production, life cycle water use, carbon footprint, nutrient runoff, corporate profitability, and societal well-being. We evaluate activities related to power generation (coal and gas extraction and use, transportation options, cooling technologies, solar panels, wind turbines), food production (farming with and without tillage), waste utilization (carbon dioxide capture and conversion to hydrocarbons, green hydrogen), and ecological restoration (forests and wetlands). Application of this framework to the Muskingum River watershed in Ohio, U.S.A. indicates that seeking synergies between human and natural systems can provide innovative solutions that improve the FEW nexus while making positive contributions to society with greater respect for nature's limits. We show that the conventional engineering approach of relying only on technological approaches for meeting sustainability objectives can have limited environmental and societal benefits while reducing profitability. In contrast, techno-ecologically synergistic design between agricultural systems and wetlands can reduce nutrient runoff with little compromise in other goals. Additional synergies between farming and photovoltaic systems along with the use of wetlands can further improve the FEW nexus while reducing CO 2 and nutrient emissions, with a relatively small compromise in corporate profitability. These results should motivate further work on innovative TES designs that can provide “win–win” solutions for meeting global energy needs in an environmentally and socially beneficial manner.more » « less
An official website of the United States government
