skip to main content


Title: Teleseismic P ‐Wave Attenuation Beneath the Southeastern United States
Abstract

Seismic attenuation is an important parameter for characterizing subsurface morphology and thermal structure. In this study, we useP‐wave amplitude spectra from 588 teleseismic events recorded by 477 broadband seismic stations in the southeastern United States to examine the spatial variations of seismic attenuation in the crust and upper mantle. The resulting seismic attenuation parameter (∆t*) measurements obtained using the spectral ratio technique reveal a zone of relatively low attenuation in the Gulf of Mexico Coastal Plain and the southwestern terminus of the Piedmont province. Spatial coherency analysis of the ∆t* observations suggests that the center of the low attenuation layer is located within the uppermost mantle at about 70 km depth. This low attenuation anomaly lies along the suture zone between Laurentia and Gondwana and approximately coincides with the east‐west trending Brunswick magnetic anomaly. The origin of this low attenuation anomaly can be attributed to low attenuation bodies in the form of remnant lithospheric fragments in the deep crust and the uppermost mantle. The contribution of scattering to the observed ∆t* is estimated by calculating the ratio of amplitude on the transverse and vertical components in theP‐wave window. Relative to the rest of the study area, the Gulf of Mexico Coastal Plain demonstrates weaker scattering which is suggestive of a more homogenous crustal and uppermost mantle structure.

 
more » « less
Award ID(s):
1919789
NSF-PAR ID:
10449192
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
22
Issue:
6
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Improving the resolution of seismic anelastic models is critical for a better understanding of the Earth’s subsurface structure and dynamics. Seismic attenuation plays a crucial role in estimating water content, partial melting and temperature variations in the Earth’s crust and mantle. However, compared to seismic wave-speed models, seismic attenuation tomography models tend to be less resolved. This is due to the complexity of amplitude measurements and the challenge of isolating the effect of attenuation in the data from other parameters. Physical dispersion caused by attenuation also affects seismic wave speeds, and neglecting scattering/defocusing effects in classical anelastic models can lead to biased results. To overcome these challenges, it is essential to account for the full 3-D complexity of seismic wave propagation. Although various synthetic tests have been conducted to validate anelastic full-waveform inversion (FWI), there is still a lack of understanding regarding the trade-off between elastic and anelastic parameters, as well as the variable influence of different parameter classes on the data. In this context, we present a synthetic study to explore different strategies for global anelastic inversions.

    To assess the resolution and sensitivity for different misfit functions, we first perform mono-parameter inversions by inverting only for attenuation. Then, to study trade-offs between parameters and resolution, we test two different inversion strategies (simultaneous and sequential) to jointly constrain the elastic and anelastic parameters. We found that a sequential inversion strategy performs better for imaging attenuation than a simultaneous inversion. We also demonstrate the dominance of seismic wave speeds over attenuation, underscoring the importance of determining a good approximation of the Hessian matrix and suitable damping factors for each parameter class.

     
    more » « less
  2. SUMMARY

    The southeastern Korean Peninsula (SeKP) has experienced intense deformation owing to subduction and backarc extension at the eastern continental margin of the Eurasian Plate, leading to the formation of complex tectonic structures. Abnormally high surface heat flux, Cenozoic volcanism, signatures of mantle degassing and hydrothermal alteration, and several active fault systems with extensional sedimentary basins have been identified; however, the major driving forces that promote local seismic events and hydrothermal activities remain enigmatic. Here, we constructed 3-D P-wave velocity of the crust and upper mantle in the SeKP for the first time using a teleseismic traveltime tomography method and an extensive data set obtained from a dense seismic network. Our model revealed three distinct velocity patterns at different depths: (1) in the upper crust (depth ∼0–10 km), a low-velocity anomaly beneath the Cenozoic sedimentary basin exhibiting a prominent lateral velocity contrasts with higher velocities in the Cretaceous sedimentary and plutonic rocks; (2) a N–S trending low-velocity anomaly extending from the lower crust to the uppermost mantle (depth ∼20–35 km) beneath the major active fault systems interpreted as a thermally or mechanically weakened structure that could transfer high surface heat flux and transport mantle-driven gases and (3) a low-velocity anomaly adjacent to the Cenozoic basin in the upper mantle at depths of 35–55 km interpreted as the higher temperature upper mantle. Via a series of geodynamic simulations, we demonstrated that the extensional deformation at the eastern continental margin during the Early to Middle Miocene locally enhanced the temperature of the crust and upper mantle beneath the SeKP. We propose that a hydrothermal system, resulting from the thermally modified lithosphere of the continental margin, has contributed to the enhanced local seismicity and geothermal activities observed in the SeKP region.

     
    more » « less
  3. SUMMARY

    The seismic quality factor (Q) of the Earth’s mantle is of great importance for the understanding of the physical and chemical properties that control mantle anelasticity. The radial structure of the Earth’s Q is less well resolved compared to its wave speed structure, and large discrepancies exist among global 1-D Q models. In this study, we build a global data set of amplitude measurements of S, SS, SSS and SSSS waves using earthquakes that occurred between 2009 and 2017 with moment magnitudes ranging from 6.5 to 8.0. Synthetic seismograms for those events are computed in a 1-D reference model PREM, and amplitude ratios between observed and synthetic seismograms are calculated in the frequency domain by spectra division, with measurement windows determined based on visual inspection of seismograms. We simulate wave propagation in a global velocity model S40RTS based on SPECFEM3D and show that the average amplitude ratio as a function of epicentral distance is not sensitive to 3-D focusing and defocusing for the source–receiver configuration of the data set. This data set includes about 5500 S and SS measurements that are not affected by mantle transition zone triplications (multiple ray paths), and those measurements are applied in linear inversions to obtain a preliminary 1-D Q model QMSI. This model reveals a high Q region in the uppermost lower mantle. While model QMSI improves the overall datafit of the entire data set, it does not fully explain SS amplitudes at short epicentral distances or the amplitudes of the SSS and SSSS waves. Using forward modelling, we modify the 1-D model QMSI iteratively to reduce the overall amplitude misfit of the entire data set. The final Q model QMSF requires a stronger and thicker high Q region at depths between 600 and 900 km. This anelastic structure indicates possible viscosity layering in the mid mantle.

     
    more » « less
  4. Abstract

    We present electrical resistivity models of the crust and upper mantle from two‐dimensional (2‐D) inversion of magnetotelluric (MT) data collected in the Rio Grande rift, New Mexico, USA. Previous geophysical studies of the lithosphere beneath the rift identified a low‐velocity zone several hundred kilometers wide, suggesting that the upper mantle is characterized by a very broad zone of modified lithosphere. In contrast, the surface expression of the rift (e.g., high‐angle normal faults and synrift sedimentary units) is confined to a narrow region a few tens of kilometers wide about the rift axis. MT data are uniquely suited to probing the depths of the lithosphere that fill the gap between surface geology and body wave seismic tomography, namely the middle to lower crust and uppermost mantle. We model the electrical resistivity structure of the lithosphere along two east‐west trending profiles straddling the rift axis at the latitudes of 36.2 and 32.0°N. We present results from both isotropic and anisotropic 2‐D inversions of MT data along these profiles, with a strong preference for the latter in our interpretation. A key feature of the anisotropic resistivity modeling is a broad (~200‐km wide) zone of enhanced conductivity (<20 Ωm) in the middle to lower crust imaged beneath both profiles. We attribute this lower crustal conductor to the accumulation of free saline fluids and partial melt, a direct result of magmatic activity along the rift. High‐conductivity anomalies in the midcrust and upper mantle are interpreted as fault zone alteration and partial melt, respectively.

     
    more » « less
  5. null (Ed.)
    SUMMARY Interfaces are important part of Earth’s layering structure. Here, we developed a new model parametrization and iterative linearized inversion method that determines 1-D crustal velocity structure using surface wave dispersion, teleseismic P-wave receiver functions and Ps and PmP traveltimes. Unlike previous joint inversion methods, the new model parametrization includes interface depths and layer Vp/Vs ratios so that smoothness constraint can be conveniently applied to velocities of individual layers without affecting the velocity discontinuity across the interfaces. It also allows adding interface-related observation such as traveltimes of Ps and PmP in the joint inversion to eliminate the trade-off between interface depth and Vp/Vs ratio and therefore to reduce the uncertainties of results. Numerical tests show that the method is computationally efficient and the inversion results are robust and independent of the initial model. Application of the method to a dense linear array across the Wabash Valley Seismic Zone (WVSZ) produced a high-resolution crustal image in this seismically active region. The results show a 51–55-km-thick crust with a mid-crustal interface at 14–17 km. The crustal Vp/Vs ratio varies from 1.69 to 1.90. There are three pillow-like, ∼100 km apart high-velocity bodies sitting at the base of the crust and directly above each of them are a low-velocity anomaly in the middle crust and a high-velocity anomaly in the upper crust. They are interpreted to be produced by mantle magmatic intrusions and remelting during rifting events in the end of the Precambrian. The current diffuse seismicity in the WVSZ might be rooted in this ancient distributed rifting structure. 
    more » « less