skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanoparticle Assembly in High Polymer Concentration Solutions Increases Superlattice Stability
Abstract Polymer nanocomposites are made by combining a nanoscale filler with a polymer matrix, where polymer‐particle interactions can enhance matrix properties and introduce behaviors distinct from either component. Manipulating particle organization within a composite potentially allows for better control over polymer‐particle interactions, and the formation of ordered arrays can introduce new, emergent properties not observed in random composites. However, self‐assembly of ordered particle arrays typically requires weak interparticle interactions to prevent kinetic traps, making these assemblies incompatible with most conventional processing techniques. As a result, more fundamental investigations are needed into methods to provide additional stability to these lattices without disrupting their internal organization. The authors show that the addition of free polymer chains to the assembly solution is a simple means to increase the stability of nanoparticle superlattices against thermal dissociation. By adding high concentrations (>50 mg mL−1) of free polymer to nanoparticle superlattices, it is possible to significantly elevate their thermal stability without adversely affecting ordering. Moreover, polymer topology, molecular weight, and concentration can also be used as independent design handles to tune this behavior. Collectively, this work allows for a wider range of processing conditions for generating future nanocomposites with complete control over particle organization within the material.  more » « less
Award ID(s):
1653289
PAR ID:
10449214
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
17
Issue:
36
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Polymer nanocomposites containing nanoscale fillers are an important class of materials due to their ability to access a wide variety of properties as a function of their composition. In order to take full advantage of these properties, it is critical to control the distribution of nanofillers within the parent polymer matrix, as this structural organization affects how the two constituent components interact with one another. In particular, new methods for generating ordered arrays of nanofillers represent a key underexplored research area, as emergent properties arising from nanoscale ordering can be used to introduce novel functionality currently inaccessible in random composites. The knowledge gained from developing such methods will provide important insight into the thermodynamics and kinetics associated with nanomaterial and polymer assembly. These insights will not only benefit researchers working on new composite materials, but will also deepen our understanding of soft matter systems in general. In this review, we summarize contemporary research efforts in manipulating nanofiller organization in polymer nanocomposites and highlight future challenges and opportunities for constructing ordered nanocomposite materials. 
    more » « less
  2. Nanocomposite tectons (NCTs) are nanocomposite building blocks consisting of nanoparticle cores functionalized with a polymer brush, where each polymer chain terminates in a supramolecular recognition group capable of driving particle assembly. Like other ligand-driven nanoparticle assembly schemes (for example those using DNA-hybridization or solvent evaporation), NCTs are able to make colloidal crystal structures with precise particle organization in three dimensions. However, despite the similarity of NCT assembly to other methods of engineering ordered particle arrays, the crystallographic symmetries of assembled NCTs are significantly different. In this study, we provide a detailed characterization of the dynamics of hybridizations through universal (independent of microscopic details) parameters. We perform rigorous free energy calculations and identify the persistence length of the ligand as the critical parameter accounting for the differences in the phase diagrams of NCTs and other assembly methods driven by hydrogen bond hybridizations. We also report new experiments to provide direct verification for the predictions. We conclude by discussing the role of non-equilibrium effects and illustrating how NCTs provide a unification of the two most successful strategies for nanoparticle assembly: solvent evaporation and DNA programmable assembly. 
    more » « less
  3. This work describes how a solid-state blending method such as jet milling can be used to successfully prepare polysulfone (PSU)/ γ -alumina nanocomposites. For comparison purposes, conventional melt extrusion was used as well. Morphological analysis revealed how jet mill blending allows obtaining well-dispersed γ -alumina nanoparticles within a polysulfone matrix without any surface treatment, with an important decrease of particle size promoted by the breakup of agglomerates and aggregates due to the particle-particle impacts during processing, which was not observed in the extruded nanocomposites. DSC analysis demonstrated that jet-milling processing promoted T g enhancements with alumina addition, while TGA experiments confirmed the increment of thermal stability of the nanocomposites prepared by jet milling when compared with the composites prepared by extrusion. The tensile tests showed that ductility remains at a high value for milled nanocomposites, which agreed with the fracture surface images revealing large plastic deformation as a function of the alumina content. This comparative study indicates that the dispersion of nanoparticles in PSU was more homogeneous, with smaller nanoparticles when preparing nanocomposites using jet milling, showing a strong correlation with the enhanced final properties of the nanocomposites. 
    more » « less
  4. Crystallization is a universal phenomenon underpinning many industrial and natural processes and is fundamental to chemistry and materials science. However, microscopic crystallization pathways of nanoparticle superlattices have been seldom studied mainly owing to the difficulty of real-time observation of individual self-assembling nanoparticles in solution. Here, using in situ electron microscopy, we directly image the full self-assembly pathway from dispersed nanoparticles into ordered superlattices in nonaqueous solution. We show that electron-beam irradiation controls nanoparticle mobility, and the solvent composition largely dictates interparticle interactions and assembly behaviors. We uncover a multistep crystallization pathway consisting of four distinct stages through multi-order-parameter analysis and visualize the formation, migration, and annihilation of multiple types of defects in nanoparticle superlattices. These findings open the door for achieving independent control over imaging conditions and nanoparticle assembly conditions and will enable further study of the microscopic kinetics of assembly and phase transition in nanocolloidal systems. 
    more » « less
  5. In supramolecular materials, multiple weak binding groups can act as a single collective unit when confined to a localized volume, thereby producing strong but dynamic bonds between material building blocks. This principle of multivalency provides a versatile means of controlling material assembly, as both the number and the type of supramolecular moieties become design handles to modulate the strength of intermolecular interactions. However, in materials with building blocks significantly larger than individual supramolecular moieties (e.g., polymer or nanoparticle scaffolds), the degree of multivalency is difficult to predict or control, as sufficiently large scaffolds inherently preclude separated supramolecular moieties from interacting. Because molecular models commonly used to examine supramolecular interactions are intrinsically unable to examine any trends or emergent behaviors that arise due to nanoscale scaffold geometry, our understanding of the thermodynamics of these massively multivalent systems remains limited. Here we address this challenge via the coassembly of polymer-grafted nanoparticles and multivalent polymers, systematically examining how multivalent scaffold size, shape, and spacing affect their collective thermodynamics. Investigating the interplay of polymer structure and supramolecular group stoichiometry reveals complicated but rationally describable trends that demonstrate how the supramolecular scaffold design can modulate the strength of multivalent interactions. This approach to self-assembled supramolecular materials thus allows for the manipulation of polymer−nanoparticle composites with controlled thermal stability, nanoparticle organization, and tailored meso- to microscopic structures. The sophisticated control of multivalent thermodynamics through precise modulation of the nanoscale scaffold geometry represents a significant advance in the ability to rationally design complex hierarchically structured materials via self-assembly. 
    more » « less