skip to main content


Title: Is the grass always greener? Land surface phenology reveals differences in peak and season‐long vegetation productivity responses to climate and management
Abstract

Vegetation phenology—the seasonal timing and duration of vegetative phases—is controlled by spatiotemporally variable contributions of climatic and environmental factors plus additional potential influence from human management. We used land surface phenology derived from the Advanced Very High Resolution Radiometer and climate data to examine variability in vegetation productivity and phenological dates from 1989 to 2014 in the U.S. Northwestern Plains, a region with notable spatial heterogeneity in climate, vegetation, and land use. We first analyzed interannual trends in six phenological measures as a baseline. We then demonstrated how including annual‐resolution predictors can provide more nuanced insights into measures of phenology between plant communities and across the ecoregion. Across the study area, higher annual precipitation increased both peak and season‐long productivity. In contrast, higher mean annual temperatures tended to increase peak productivity but for the majority of the study area decreased season‐long productivity. Annual precipitation and temperature had strong explanatory power for productivity‐related phenology measures but predicted date‐based measures poorly. We found that relationships between climate and phenology varied across the region and among plant communities and that factors such as recovery from disturbance and anthropogenic management also contributed in certain regions. In sum, phenological measures did not respond ubiquitously nor covary in their responses. Nonclimatic dynamics can decouple phenology from climate; therefore, analyses including only interannual trends should not assume climate alone drives patterns. For example, models of areas exhibiting greening or browning should account for climate, anthropogenic influence, and natural disturbances. Investigating multiple aspects of phenology to describe growing‐season dynamics provides a richer understanding of spatiotemporal patterns that can be used for predicting ecosystem responses to future climates and land‐use change. Such understanding allows for clearer interpretation of results for conservation, wildlife, and land management.

 
more » « less
PAR ID:
10449216
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
11
Issue:
16
ISSN:
2045-7758
Page Range / eLocation ID:
p. 11168-11199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate shapes geographic and seasonal patterns in global fire activity by mediating vegetation composition, productivity, and desiccation in conjunction with land‐use and anthropogenic factors. Yet, the degree to which climate variability affects interannual variability in burned area across Earth is less understood. Two decades of satellite‐derived burned area records across forested and nonforested areas were used to examine global interannual climate–fire relationships at ecoregion scales. Measures of fuel aridity exhibited strong positive correlations with forested burned area, with weaker relationships in climatologically drier regions. By contrast, cumulative precipitation antecedent to the fire season exhibited positive correlations to nonforested burned area, with stronger relationships in climatologically drier regions. Climate variability explained roughly one‐third of the interannual variability in burned area across global ecoregions. These results highlight the importance of climate variability in enabling fire activity globally, but also identify regions where anthropogenic and other influences may facilitate weaker relationships. Empirical fire modeling efforts can complement process‐based global fire models to elucidate how fire activity is likely to change amidst complex interactions among climatic, vegetation, and human factors.

     
    more » « less
  2. Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future. 
    more » « less
  3. Abstract

    Single phenological measures, like the average rate of phenological advancement, may be insufficient to explain how climate change is driving trends in animal populations. Here, we develop a multifactorial concept of spring phenology—including the onset of spring, spring duration, interannual variability, and their temporal changes—as a driver for population dynamics of migratory terrestrial species in seasonal environments. Using this conceptual model, we found that effects of advancing spring phenology on animal populations may be buffered or amplified depending on the duration and interannual variability of spring green‐up, and those effects are modified by evolutionary and plastic adaptations of species. Furthermore, we compared our modelling results with empirical data on normalized difference vegetation index‐based spring green‐up phenology and population trends of 106 European landbird finding similar associations. We conclude how phenological changes are expected to affect migratory bird populations across Europe and identify regions that are particularly prone to suffer population declines.

     
    more » « less
  4. Abstract

    Cycles of plant growth, termed phenology, are tightly linked to environmental controls. The length of time spent growing, bounded by the start and end of season, is an important determinant of the global carbon, water, and energy balance. Much focus has been given to global warming and consequences for shifts in growing‐season length in temperate regions. In conjunction with warming temperatures, altered precipitation regimes are another facet of climate change that have potentially larger consequences than temperature in dryland phenology globally. We experimentally manipulated incoming precipitation in a semiarid grassland for over a decade and recorded plant phenology at the daily scale for 7 years. We found precipitation to have a strong relationship with the timing of grass greenup and senescence but temperature had only a modest effect size on grass greenup. Pre‐season drought strongly resulted in delayed grass greenup dates and shorter growing‐season lengths. Spring and summer drought corresponded with earlier grass senescence, whereas higher precipitation accumulation over these seasons corresponded with delayed grass senescence. However, extremely wet conditions diluted this effect and caused a plateaued response. Deep‐rooted woody shrubs showed few effects of variable precipitation or temperature on phenology and displayed consistent annual phenological timing compared with grasses. Whereas rising temperatures have already elicited phenological consequences and extended growing‐season length for mid and high‐latitude ecosystems, precipitation change will be the major driver of phenological change in drylands that cover 40% of the land surface with consequences for the global carbon, water, and energy balance.

     
    more » « less
  5. The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems. However, we do not yet know where and when this occurs and whether these phenological asynchronies are driven by variation in local vegetation communities or by spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and root growth and senescence across microclimates and plant communities at five sites across the tundra biome. We observed asynchronous growth between above-ground and below-ground plant tissue, with the below-ground season extending up to 74% beyond the onset of above-ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity and growth rates of roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below-ground carbon storage as roots remain active in unfrozen soils for longer as the climate warms. Taken together, increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrubs and graminoids, can act together to alter below-ground productivity and carbon cycling in the tundra biome.

     
    more » « less