skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 29, 2025

Title: Computational Large‐Deformation‐Plasticity Periporomechanics for Localization and Instability in Deformable Porous Media
ABSTRACT In this article, we formulate a computational large‐deformation‐plasticity (LDP) periporomechanics (PPM) paradigm through a multiplicative decomposition of the deformation gradient following the notion of an intermediate stress‐free configuration. PPM is a nonlocal meshless formulation of poromechanics for deformable porous media through integral equations in which a porous material is represented by mixed material points with nonlocal poromechanical interactions. Advanced constitutive models can be readily integrated within the PPM framework. In this paper, we implement a linearly elastoplastic model with Drucker–Prager yield and post‐peak strain softening (loss of cohesion). This is accomplished using the multiplicative decomposition of the nonlocal deformation gradient and the return mapping algorithm for LDP. The paper presents a series of numerical examples that illustrate the capabilities of PPM to simulate the development of shear bands, large plastic deformations, and progressive slope failure mechanisms. We also demonstrate that the PPM results are robust and stable to the material point density (grid spacing). We illustrate the complex retrogressive failure observed in sensitive St. Monique clay that was triggered by toe erosion. The PPM analysis captures the distribution of horst and graben structures that were observed in the failed clay mass.  more » « less
Award ID(s):
1944009
PAR ID:
10563213
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical and Analytical Methods in Geomechanics
Volume:
49
Issue:
4
ISSN:
0363-9061
Format(s):
Medium: X Size: p. 1278-1298
Size(s):
p. 1278-1298
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamic shearing banding and fracturing in unsaturated porous media are significant problems in engineering and science. This article proposes a multiphase micro‐periporomechanics (PPM) paradigm for modeling dynamic shear banding and fracturing in unsaturated porous media. Periporomechanics (PPM) is a nonlocal reformulation of classical poromechanics to model continuous and discontinuous deformation/fracture and fluid flow in porous media through a single framework. In PPM, a multiphase porous material is postulated as a collection of a finite number of mixed material points. The length scale in PPM that dictates the nonlocal interaction between material points is a mathematical object that lacks a direct physical meaning. As a novelty, in the coupled PPM, a microstructure‐based material length scale is incorporated by considering micro‐rotations of the solid skeleton following the Cosserat continuum theory for solids. As a new contribution, we reformulate the second‐order work for detecting material instability and the energy‐based crack criterion and J‐integral for modeling fracturing in the PPM paradigm. The stabilized Cosserat PPM correspondence principle that mitigates the multiphase zero‐energy mode instability is augmented to include unsaturated fluid flow. We have numerically implemented the novel PPM paradigm through a dual‐way fractional‐step algorithm in time and a hybrid Lagrangian–Eulerian meshfree method in space. Numerical examples are presented to demonstrate the robustness and efficacy of the proposed PPM paradigm for modeling shear banding and fracturing in unsaturated porous media. 
    more » « less
  2. The mechanical behavior of unsaturated porous media under non-isothermal conditions plays a vital role in geo-hazards and geo-energy engineering (e.g., landslides triggered by fire and geothermal energy harvest and foundations). Temperature increase can trigger localized failure and cracking in unsaturated porous media. This article investigates the shear banding and cracking in unsaturated porous media under non-isothermal conditions through a thermo–hydro–mechanical (THM) periporomechanics (PPM) paradigm. PPM is a nonlocal formulation of classical poromechanics using integral equations, which is robust in simulating continuous and discontinuous deformation in porous media. As a new contribution, we formulate a nonlocal THM constitutive model for unsaturated porous media in the PPM paradigm in this study. The THM meshfree paradigm is implemented through an explicit Lagrangian meshfree algorithm. The return mapping algorithm is used to implement the nonlocal THM constitutive model numerically. Numerical examples are presented to assess the capability of the proposed THM mesh-free paradigm for modeling shear banding and cracking in unsaturated porous media under non-isothermal conditions. The numerical results are examined to study the effect of temperature variations on the formation of shear banding and cracking in unsaturated porous media. 
    more » « less
  3. Abstract In this article we formulate a stable computational nonlocal poromechanics model for dynamic analysis of saturated porous media. As a novelty, the stabilization formulation eliminates zero‐energy modes associated with the original multiphase correspondence constitutive models in the coupled nonlocal poromechanics model. The two‐phase stabilization scheme is formulated based on an energy method that incorporates inhomogeneous solid deformation and fluid flow. In this method, the nonlocal formulations of skeleton strain energy and fluid flow dissipation energy equate to their local formulations. The stable coupled nonlocal poromechanics model is solved for dynamic analysis by an implicit time integration scheme. As a new contribution, we validate the coupled stabilization formulation by comparing numerical results with analytical and finite element solutions for one‐dimensional and two‐dimensional dynamic problems in saturated porous media. Numerical examples of dynamic strain localization in saturated porous media are presented to demonstrate the efficacy of the stable coupled poromechanics framework for localized failure under dynamic loads. 
    more » « less
  4. Abstract We present a new computational fluid dynamics approach for simulating two‐phase flow in hybrid systems containing solid‐free regions and deformable porous matrices. Our approach is based on the derivation of a unique set of volume‐averaged partial differential equations that asymptotically approach the Navier‐Stokes Volume‐of‐Fluid equations in solid‐free regions and multiphase Biot Theory in porous regions. The resulting equations extend our recently developed Darcy‐Brinkman‐Biot framework to multiphase flow. Through careful consideration of interfacial dynamics (relative permeability and capillary effects) and extensive benchmarking, we show that the resulting model accurately captures the strong two‐way coupling that is often exhibited between multiple fluids and deformable porous media. Thus, it can be used to represent flow‐induced material deformation (swelling, compression) and failure (cracking, fracturing). The model's open‐source numerical implementation,hybridBiotInterFoam, effectively marks the extension of computational fluid mechanics into modeling multiscale multiphase flow in deformable porous systems. The versatility of the solver is illustrated through applications related to material failure in poroelastic coastal barriers and surface deformation due to fluid injection in poro‐visco‐plastic systems. 
    more » « less
  5. Summary Geomaterials such as sand and clay are highly heterogeneous multiphase materials. Nonlocality (or a characteristic length scale) in modeling geomaterials based on the continuum theory can be associated with several factors, for instance, the physical interactions of material points within finite distance, the homogenization or smoothing process of material heterogeneity, and the particle or problem size‐dependent mechanical behavior (eg, the thickness of shear bands) of geomaterials. In this article, we formulate a nonlocal elastoplastic constitutive model for geomaterials by adapting a local elastoplastic model for geomaterials at a constant suction through the constitutive correspondence principle of the state‐based peridynamics theory. We numerically implement this nonlocal constitutive model via the classical return‐mapping algorithm of computational plasticity. We first conduct a one‐dimensional compression test of a soil sample at a constant suction through the numerical model with three different values of the nonlocal variable (horizon)δ. We then present a strain localization analysis of a soil sample under the constant suction and plane strain conditions with different nonlocal variables. The numerical results show that the proposed nonlocal model can be used to simulate the inception and propagation of shear banding as well as to capture the thickness of shear bands in geomaterials at a constant suction. 
    more » « less