skip to main content


Title: The Mechanism of the Origin and Development of Lightning From Initiating Event to Initial Breakdown Pulses (v.2)
Abstract

Based on experimental results of recent years, this article presents a qualitative description of a possible mechanism (termed the Mechanism) covering the main stages of lightning initiation, starting before and including the initiating event, followed by the initial electric field change (IEC), followed by the first few initial breakdown pulses (IBPs). The Mechanism assumes initiation occurs in a region of ~1 km3with average electric fieldE > 0.3 MV/(m·atm), which contains, because of turbulence, numerous small “Ethvolumes” of ~10−4–10−3 m3withE ≥ 3 MV/(m·atm). The Mechanism allows for lightning initiation by either of two observed types of events: a high‐power, very high frequency (VHF) event such as a Narrow Bipolar Event or a weak VHF event. According to the Mechanism, both types of initiating events are caused by a group of relativistic runaway electron avalanche particles (where the initial electrons are secondary particles of an extensive air shower) passing through manyEthvolumes, thereby causing the nearly simultaneous launching of many positive streamer flashes. Due to ionization‐heating instability, unusual plasma formations (UPFs) appear along the streamers' trajectories. These UPFs combine into three‐dimensional (3‐D) networks of hot plasma channels during the IEC, resulting in its observed weak current flow. The subsequent development and combination of two (or more) of these 3‐D networks of hot plasma channels then causes the first IBP. Each subsequent IBP is caused when another 3‐D network of hot plasma channels combines with the chain of networks caused by earlier IBPs.

 
more » « less
Award ID(s):
1742930
NSF-PAR ID:
10453827
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
22
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study describes a new method for modeling the radiated electric field (E) of initial breakdown pulses (IBPs) of lightning flashes. Similar to some previous models, it is assumed thatEpulses are caused by a current propagating along a vertical path, and an equation based on Maxwell's equations is used to determineEdue to the current. A matrix inversion technique is used with the IBP radiation term ofEto determine the IBP current waveform directly from far‐fieldEmeasurements rather than assuming a parameterized current waveform and searching for appropriate parameters. This technique is developed and applied to observations of six previously modeled IBPs. Compared to the prior modeling, this matrix inversion method gives significantly better results, based on calculated IBP goodness of fit to the originalEdata. In addition, this model can match IBP subpulses along with representing the overall bipolar IBP waveform. This method should be useful for studying IBPs because once the IBP current is known, one can calculate other physical parameters of IBPs, such as charge moment change, total charge moved, and total power radiated. Thus, the more realistic IBP current waveform determined by this technique may offer new clues about the physical mechanism causing IBPs.

     
    more » « less
  2. Abstract

    The properties of the first 5–12 classic initial breakdown pulses (IBPs) of three cloud‐to‐ground (CG) lightning flashes were determined using a modified transmission line model. As part of the modeling, the current with respect to time of each IBP was determined from the measured electric field changes at multiple sites using three theoretical methods called Hilbert transform, Hertzian dipole, and matrix inversion. In the transmission line modeling the length of each IBP was estimated from high‐speed video data of the IBPs. The modeling provided the following properties of the larger classic IBPs in each flash: peak current, velocity, total charge, charge moment, radiated power, and total energy dissipated for successive IB pulses in three developing lightning flashes. For the main initial leader channel in the three CG flashes (and for one long branch), IBP peak current was largest for the first or second classic IBP and declined mostly monotonically with successive IBPs. For the same channels, IBP current velocity was smallest for the first classic IBP and increased mostly monotonically with successive IBPs. The smallest velocities were (2.0, 2.5, 2.5, 3.0) × 107m/s, respectively, while the largest velocities were (9.2, 12.2, 11.5, 12.0) × 107m/s, respectively. These data support earlier hypotheses that it is the classic IB pulses during initial leader of normal negative CG flashes that change the nonconductive air into an ionized path that is sufficiently long and conductive to start the stepped leader.

     
    more » « less
  3. Abstract

    The production mechanism for terrestrial gamma ray flashes (TGFs) is not entirely understood, and details of the corresponding lightning activity and thunderstorm charge structure have yet to be fully characterized. Here we examine sub‐microsecond VHF (14–88 MHz) radio interferometer observations of a 247‐kA peak‐current EIP, or energetic in‐cloud pulse, a reliable radio signature of a subset of TGFs. The EIP consisted of three high‐amplitude sferic pulses lasting60μs in total, which peaked during the second (main) pulse. The EIP occurred during a normal‐polarity intracloud lightning flash that was highly unusual, in that the initial upward negative leader was particularly fast propagating and discharged a highly concentrated region of upper‐positive storm charge. The flash was initiated by a high‐power (46 kW) narrow bipolar event (NBE), and the EIP occurred about 3 ms later after3 km upward flash development. The EIP was preceded200μs by a fast6 × 106m/s upward negative breakdown and immediately preceded and accompanied by repeated sequences of fast (107–108m/s) downward then upward streamer events each lasting 10 to 20μs, which repeatedly discharged a large volume of positive charge. Although the repeated streamer sequences appeared to be a characteristic feature of the EIP and were presumably involved in initiating it, the EIP sferic evolved independently of VHF‐producing activity, supporting the idea that the sferic was produced by relativistic discharge currents. Moreover, the relativistic currents during the main sferic pulse initiated a strong NBE‐like event comparable in VHF power (115 kW) to the highest‐power NBEs.

     
    more » « less
  4. Abstract

    In this paper we report the first close, high‐resolution observations of downward‐directed terrestrial gamma‐ray flashes (TGFs) detected by the large‐area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (IBPs) in the first few milliseconds of negative cloud‐to‐ground and low‐altitude intracloud flashes and that the IBPs are produced by a newly identified streamer‐based discharge process called fast negative breakdown. The observations indicate the relativistic runaway electron avalanches (RREAs) responsible for producing the TGFs are initiated by embedded spark‐like transient conducting events (TCEs) within the fast streamer system and potentially also by individual fast streamers themselves. The TCEs are inferred to be the cause of impulsive sub‐pulses that are characteristic features of classic IBP sferics. Additional development of the avalanches would be facilitated by the enhanced electric field ahead of the advancing front of the fast negative breakdown. In addition to showing the nature of IBPs and their enigmatic sub‐pulses, the observations also provide a possible explanation for the unsolved question of how the streamer to leader transition occurs during the initial negative breakdown, namely, as a result of strong currents flowing in the final stage of successive IBPs, extending backward through both the IBP itself and the negative streamer breakdown preceding the IBP.

     
    more » « less
  5. null (Ed.)
    Abstract This study describes results from video observations of five intracloud flashes located ≤ 20 km from the camera and recorded with 6.1 µs exposure time and 6.66 µs frame intervals. Video data are supported with electric field change (E-change) and VHF measurements, with emphasis on the flash initiating event (IE) and initial breakdown (IB) stage. In four of the five flashes, the IE is accompanied by weak luminosity, ≤ 5% above background, lasting for 300–500 µs. Two of these four IEs were positive Narrow Bipolar Events (NBEs) with VHF powers of 43 and 990 W; these are the first (known) data showing visible light detected with a positive NBE. Two other IEs with weak luminosity had powers of 0.5 and 1 W, and the IE with no detected luminosity had a VHF power of 3 W. A typical IB cluster consists of several narrow pulses and one classic pulse in E-change data (along with many VHF pulses), and each example flash has 2–10 IB clusters in the first 5–50 ms. The luminosity of IB clusters was substantially greater than IE luminosity, ranging from 10 to 40% above background in four examples, while for one flash with 10 IB clusters, the luminosity range was 35–360% above background (average 190%). Luminosity durations of IB clusters were 520–1750 µs with average 1210 µs. For both IEs and IB clusters, increases in the detected luminosity were closely timed with substantial VHF emissions and decreased when VHF emissions weakened. 
    more » « less