skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ontogenetic changes in magnitudes of integration in the macaque skull
Abstract ObjectivesMagnitudes of morphological integration may constrain or facilitate craniofacial shape variation. The aim of this study was to analyze how the magnitude of integration in the skull ofMacaca fascicularischanges throughout ontogeny in relation to developmental and/or functional modules. Materials and methodsGeometric morphometric methods were used to analyze the magnitude of integration in the macaque cranium and mandible in 80 juvenile and 40 adultM. fascicularisspecimens. Integration scores in skull modules were calculated using integration coefficient of variation (ICV) of eigenvalues based on a resampling procedure. Resultant ICV scores between the skull as a whole, and developmental and/or functional modules were compared using Mann–WhitneyUtests. ResultsResults showed that most skull modules were more tightly integrated than the skull as a whole, with the exception of the chondrocranium in juveniles without canines, the chondrocranium/face complex and the mandibular corpus in adults, and the mandibular ramus in all juveniles. The chondrocranium/face and face/mandibular corpus complexes were more tightly integrated in juveniles than adults, possibly reflecting the influences of early brain growth/development, and the changing functional demands of infant suckling and later masticatory loading. This is also supported by the much higher integration of the mandibular ramus in adults compared with juveniles. DiscussionMagnitudes of integration in skull modules reflect developmental/functional mechanisms inM. fascicularis. However, the relationship between “evolutionary flexibility” and developmental/functional mechanisms was not direct or simple, likely because of the complex morphology, multifunctionality, and various ossification origins of the skull.  more » « less
Award ID(s):
1830745
PAR ID:
10449256
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Physical Anthropology
Volume:
174
Issue:
1
ISSN:
0002-9483
Page Range / eLocation ID:
p. 76-88
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectivesModular architecture of traits in complex organisms can be important for morphological evolution at micro‐ and sometimes macroevolutionary scales as it may influence the tempo and direction of changes to groups of traits that are essential for particular functions, including food acquisition and processing. We tested several distinct hypotheses about craniofacial modularity in the hominine skull in relation to feeding biomechanics. Materials and MethodsFirst, we formulated hypothesized functional modules for craniofacial traits reflecting specific demands of feeding biomechanics (e.g., masseter leverage/gape or tooth crown mechanics) inHomo sapiens,Pan troglodytes, andGorilla gorilla. Then, the pattern and strength of modular signal was quantified by the covariance ratio coefficient and compared across groups using covariance ratio effect size. Hierarchical clustering analysis was then conducted to examine whether a priori‐defined functional modules correspond to empirically recovered clusters. ResultsThere was statistical support for most a priori‐defined functional modules in the cranium and half of the functional modules in the mandible. Modularity signal was similar in the cranium and mandible, and across the three taxa. Despite a similar strength of modularity, the empirically recovered clusters do not map perfectly onto ourpriorifunctional modules, indicating that further work is needed to refine our hypothesized functional modules. ConclusionThe results suggest that modular structure of traits in association with feeding biomechanics were mostly shared with humans and the two African apes. Thus, conserved patterns of functional modularity may have facilitated evolutionary changes to the skull during human evolution. 
    more » « less
  2. Abstract ObjectivesMost research in human dental age estimation has focused on point estimates of age, and most research on dental development theories has focused on morphology or eruption. Correlations between developing teeth using ordinal staging have received less attention. The effect of demographic variables on these correlations is unknown. I tested the effect of reference sample demographic variables on the residual correlation matrix using the lens of cooperative genetic interaction (CGI). Materials and MethodsThe sample consisted of Moorrees et al.,Journal of Dental Research, 1963, 42, 1490–1502, scores of left mandibular permanent teeth from panoramic radiographs of 880 London children 3–22.99 years of age stratified by year of age, sex, and Bangladeshi or European ancestry. A multivariate cumulative probit model was fit to each sex/ancestry group (n = 220), each sex or ancestry (n = 440), and all individuals (n = 880). Residual correlation matrices from nine reference sample configurations were compared using Bartlett's tests of between‐sample difference matrices against the identity matrix, hierarchical cluster analysis, and dendrogram cophenetic correlations. ResultsBartlett's test results were inconclusive. Cluster analysis showed clustering by tooth class, position within class, and developmental timing. Clustering patterns and dendrogram correlations showed similarity by sex but not ancestry. DiscussionExpectations of CGI were supported for developmental staging. This supports using CGI as a model for explaining patterns of variation within the dentition. Sex was found to produce consistent patterns of dental correlations, whereas ancestry did not. Clustering by timing of development supports phenotypic plasticity in the dentition and suggests shared environment over genetic ancestry to explain population differences. 
    more » « less
  3. Abstract BackgroundAnimal behavior is largely driven by the information that animals are able to extract and process from their environment. However, the function and organization of sensory systems often change throughout ontogeny, particularly in animals that undergo indirect development. As an initial step toward investigating these ontogenetic changes at the molecular level, we characterized the sensory gene repertoire and examined the expression profiles of genes linked to vision and chemosensation in two life stages of an insect that goes through metamorphosis, the butterflyBicyclus anynana. ResultsUsing RNA-seq, we compared gene expression in the heads of late fifth instar larvae and newly eclosed adults that were reared under identical conditions. Over 50 % of all expressed genes were differentially expressed between the two developmental stages, with 4,036 genes upregulated in larval heads and 4,348 genes upregulated in adult heads. In larvae, upregulated vision-related genes were biased toward those involved with eye development, while phototransduction genes dominated the vision genes that were upregulated in adults. Moreover, the majority of the chemosensory genes we identified in theB. anynanagenome were differentially expressed between larvae and adults, several of which share homology with genes linked to pheromone detection, host plant recognition, and foraging in other species of Lepidoptera. ConclusionsThese results revealed promising candidates for furthering our understanding of sensory processing and behavior in the disparate developmental stages of butterflies and other animals that undergo metamorphosis. 
    more » « less
  4. Abstract BackgroundAtlantic tarpon (Megalops atlanticus) are a highly migratory species ranging along continental and insular coastlines of the Atlantic Ocean. Due to their importance to regional recreational and sport fisheries, research has been focused on large-scale movement patterns of reproductively active adults in areas where they are of high economic value. As a consequence, geographically restricted focus on adults has left significant gaps in our understanding of tarpon biology and their movements, especially for juveniles in remote locations where they are common. Our study focused on small-scale patterns of movement and habitat use of juvenile tarpon using acoustic telemetry in a small bay in St. Thomas, US Virgin Islands. ResultsFour juvenile tarpon (80–95 cm FL) were tracked from September 2015 to February 2018, while an additional eight juveniles (61–94 cm FL) left the study area within 2 days after tagging and were not included in analysis. Four tarpon had > 78% residency and average activity space of 0.76 km2(range 0.08–1.17 km2) within Brewers Bay (1.8 km2). Their vertical distribution was < 18 m depth with occasional movements to deeper water. Activity was greater during day compared to night, with peaks during crepuscular periods. During the day tarpon used different parts of the bay with consistent overlap around the St. Thomas airport runway and at night tarpon typically remained in a small shallow lagoon. However, when temperatures in the lagoon exceeded 30 °C, tarpon moved to cooler, deeper waters outside the lagoon. ConclusionOur results, although limited to only four individuals, provide new baseline data on the movement ecology of juvenile Atlantic tarpon. We showed that juvenile tarpon had high residency within a small bay and relatively stable non-overlapping daytime home ranges, except when seasonally abundant food sources were present. Fine-scale acoustic tracking showed the effects of environmental conditions (i.e., elevated seawater temperature) on tarpon movement and habitat use. These observations highlight the need for more extensive studies of juvenile tarpon across a broader range of their distribution, and compare the similarities and differences in behavior among various size classes of individuals from small juveniles to reproductively mature adults. 
    more » « less
  5. Abstract AimsTo examine how perceived balance problems are associated with self‐reported falls in the past month after controlling for known correlates of falls among older adults. BackgroundApproximately 30% of adults age 65 and older fall each year. Most accidental falls are preventable, and older adults' engagement in fall prevention is imperative. Limited research suggest that older adults do not use the term ‘fall risk’ to describe their risk for falls. Instead, they commonly use the term ‘balance problems’. Yet, commonly used fall risk assessment tools in both primary and acute care do not assess older adults' perceived balance. Design and MethodThe Health Belief Model and the concept of perceived susceptibility served as the theoretical framework. A retrospective, cross‐sectional secondary analysis using data from the National Health and Aging Trends Study from year 2015 was conducted. The outcome variable was self‐reported falls in the last month. ResultsA subsample of independently living participants (N = 7499) was selected, and 10.3% of the sample reported a fall. Multiple logistic regression analysis revealed that the odds of reporting a fall in the past month was 3.4 times (p < .001) greater for participants who self‐reported having a balance problem compared to those who did not. In contrast, fear of falling and perceived memory problems were not uniquely associated with falls. Using a mobility device, reporting pain, poor self‐rated health status, depression and anxiety scores were also associated with falling. Conclusion and ImplicationsOlder adults' perceived balance problem is strongly associated with their fall risk. Perceived balance may be important to discuss with older adults to increase identification of fall risk. Older adults' perceived balance should be included in nursing fall risk assessments and fall prevention interventions. A focus on balance may increase older adults' engagement in fall prevention. 
    more » « less