Abstract ObjectivesMagnitudes of morphological integration may constrain or facilitate craniofacial shape variation. The aim of this study was to analyze how the magnitude of integration in the skull ofMacaca fascicularischanges throughout ontogeny in relation to developmental and/or functional modules. Materials and methodsGeometric morphometric methods were used to analyze the magnitude of integration in the macaque cranium and mandible in 80 juvenile and 40 adultM. fascicularisspecimens. Integration scores in skull modules were calculated using integration coefficient of variation (ICV) of eigenvalues based on a resampling procedure. Resultant ICV scores between the skull as a whole, and developmental and/or functional modules were compared using Mann–WhitneyUtests. ResultsResults showed that most skull modules were more tightly integrated than the skull as a whole, with the exception of the chondrocranium in juveniles without canines, the chondrocranium/face complex and the mandibular corpus in adults, and the mandibular ramus in all juveniles. The chondrocranium/face and face/mandibular corpus complexes were more tightly integrated in juveniles than adults, possibly reflecting the influences of early brain growth/development, and the changing functional demands of infant suckling and later masticatory loading. This is also supported by the much higher integration of the mandibular ramus in adults compared with juveniles. DiscussionMagnitudes of integration in skull modules reflect developmental/functional mechanisms inM. fascicularis. However, the relationship between “evolutionary flexibility” and developmental/functional mechanisms was not direct or simple, likely because of the complex morphology, multifunctionality, and various ossification origins of the skull.
more »
« less
Evaluating modularity in the hominine skull related to feeding biomechanics
Abstract ObjectivesModular architecture of traits in complex organisms can be important for morphological evolution at micro‐ and sometimes macroevolutionary scales as it may influence the tempo and direction of changes to groups of traits that are essential for particular functions, including food acquisition and processing. We tested several distinct hypotheses about craniofacial modularity in the hominine skull in relation to feeding biomechanics. Materials and MethodsFirst, we formulated hypothesized functional modules for craniofacial traits reflecting specific demands of feeding biomechanics (e.g., masseter leverage/gape or tooth crown mechanics) inHomo sapiens,Pan troglodytes, andGorilla gorilla. Then, the pattern and strength of modular signal was quantified by the covariance ratio coefficient and compared across groups using covariance ratio effect size. Hierarchical clustering analysis was then conducted to examine whether a priori‐defined functional modules correspond to empirically recovered clusters. ResultsThere was statistical support for most a priori‐defined functional modules in the cranium and half of the functional modules in the mandible. Modularity signal was similar in the cranium and mandible, and across the three taxa. Despite a similar strength of modularity, the empirically recovered clusters do not map perfectly onto ourpriorifunctional modules, indicating that further work is needed to refine our hypothesized functional modules. ConclusionThe results suggest that modular structure of traits in association with feeding biomechanics were mostly shared with humans and the two African apes. Thus, conserved patterns of functional modularity may have facilitated evolutionary changes to the skull during human evolution.
more »
« less
- Award ID(s):
- 2019669
- PAR ID:
- 10474862
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- American Journal of Biological Anthropology
- Volume:
- 183
- Issue:
- 1
- ISSN:
- 2692-7691
- Format(s):
- Medium: X Size: p. 39-59
- Size(s):
- p. 39-59
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Since Darwin, biologists have sought to understand the evolution and origins of phenotypic adaptations. The skull is particularly diverse due to intense natural selection on feeding biomechanics. We investigated the genetic and molecular origins of trophic adaptation using Lake Malawi cichlids, which have undergone an exemplary evolutionary radiation. We analyzed morphological differences in the lateral and ventral head shape among an insectivore that eats by suction feeding, an obligate biting herbivore, and their F2 hybrids. We identified variation in a series of morphological traits—including mandible width, mandible length, and buccal length—that directly affect feeding kinematics and function. Using quantitative trait loci (QTL) mapping, we found that many genes of small effects influence these craniofacial adaptations. Intervals for some traits were enriched in genes related to potassium transport and sensory systems, the latter suggesting co-evolution of feeding structures and sensory adaptations for foraging. Despite these indications of co-evolution of structures, morphological traits did not show covariation. Furthermore, phenotypes largely mapped to distinct genetic intervals, suggesting that a common genetic basis does not generate coordinated changes in shape. Together, these suggest that craniofacial traits are mostly inherited as separate modules, which confers a high potential for the evolution of morphological diversity. Though these traits are not restricted by genetic pleiotropy, functional demands of feeding and sensory structures likely introduce constraints on variation. In all, we provide insights into the quantitative genetic basis of trophic adaptation, identify mechanisms that influence the direction of morphological evolution, and provide molecular inroads to craniofacial variation.more » « less
-
Quantifying and characterizing the pattern of trait covariances is crucial for understanding how population-level patterns of integration might constrain or facilitate craniofacial evolution related to the feeding system. This study addresses an important gap in our knowledge by investigating magnitudes and patterns of morphological integration of biomechanically informative traits in the skulls of Homo sapiens, Pan troglodytes, and Gorilla gorilla. We predicted a lower magnitude of integration among human biomechanical traits since humans eat a softer, less biomechanically challenging diet than apes. Indeed, compared to African apes, the magnitudes of integration were lower in H. sapiens skulls for form data (raw dimensions) but were similar or higher for shape data (raw dimensions scaled by geometric mean). Patterns of morphological integration were generally similar, but not identical, across the three species, particularly for the form data compared to the shape data. Traits that load heavily on the primary axis of variation in morphospace are generally associated with size and/or shape of the temporalis and masseter muscles and with dimensions related to the constrained lever model of jaw biomechanics. Given the conserved nature of morphological integration, skull adaptations for food processing in African apes and humans may have been constrained to occur along certain paths of high evolvability. The conserved pattern of functional integration also indicates that extant hominine species can operate as reasonable analogues for extinct hominins in studies that require population-level patterns of trait variance/covariance.more » « less
-
Abstract ObjectivesSeveral theories have been proposed to explain the impact of ecological conditions on differences in life history variables within and between species. Here we compare female life history parameters of one western lowland gorilla population(Gorilla gorilla gorilla) and two mountain gorilla populations(Gorilla beringei beringei). Materials and MethodsWe compared the age of natal dispersal, age of first birth, interbirth interval, and birth rates using long‐term demographic datasets from Mbeli Bai (western gorillas), Bwindi Impenetrable National Park and the Virunga Massif (mountain gorillas). ResultsThe Mbeli western gorillas had the latest age at first birth, longest interbirth interval, and slowest surviving birth rate compared to the Virunga mountain gorillas. Bwindi mountain gorillas were intermediate in their life history patterns. DiscussionThese patterns are consistent with differences in feeding ecology across sites. However, it is not possible to determine the evolutionary mechanisms responsible for these differences, whether a consequence of genetic adaptation to fluctuating food supplies (“ecological risk aversion hypothesis”) or phenotypic plasticity in response to the abundance of food (“energy balance hypothesis”). Our results do not seem consistent with the extrinsic mortality risks at each site, but current conditions for mountain gorillas are unlikely to match their evolutionary history. Not all traits fell along the expected fast‐slow continuum, which illustrates that they can vary independently from each other (“modularity model”). Thus, the life history traits of each gorilla population may reflect a complex interplay of multiple ecological influences that are operating through both genetic adaptations and phenotypic plasticity.more » « less
-
Abstract Prokinesis—in which a craniofacial joint allows the rostrum to move relative to the braincase—is thought to confer diverse advantages in birds, mostly for feeding. A craniofacial joint would, however, be a weak link if cranial stability is important. Paradoxically, we have identified a craniofacial joint in helmeted hornbills (Rhinoplax vigil), birds known for violent head‐butting behavior. To understand how the helmeted hornbill balances the competing demands of kinesis and collision, we combine manual craniofacial joint manipulation, skull micro‐computed tomography (μCT) and articular raycasting, also comparing our data with μCT scans of 10 closely‐related species that do not aggressively head‐butt. The helmeted hornbill boasts a particularly massive casque, a distinctive upper mandible protrusion fronting the braincase; the craniofacial joint is immediately caudal to this, a standard prokinetic hinge joint position, at the dorsal border of braincase and upper mandible. However, whereas the craniofacial joint in all bucerotiform bird species we examined was only a slender bridge, the helmeted hornbill's joint is exceptionally reinforced. Raycasting analyses revealed high correspondence between the extremely broad joint facets, with reciprocal topographies of braincase and casque fitting like complex puzzle pieces. The result is a joint with a single degree of freedom and limited range of motion, increasing the gape when elevated, but conversely stable when depressed. With the dense network of bony trabeculae in the casque also funneling back to this joint, we infer that the damaging effects of high cranial impact are mitigated, not by dissipating impact energy, but through a skull architecture with a prodigious safety factor.more » « less
An official website of the United States government
