Abstract The California Current System is characterized by upwelling and rich mesoscale eddy activity. Cyclonic eddies generally pinch off from meanders in the California Current, potentially trapping upwelled water along the coast and transporting it offshore. Here, we use satellite-derived measurements of particulate organic carbon (POC) as a tracer of coastal water to show that cyclones located offshore that were generated near the coast contain higher carbon concentrations in their interior than cyclones of the same amplitude generated offshore. This indicates that eddies are in fact trapping and transporting coastal water offshore, resulting in an offshore POC enrichment of 20.9 ± 11 Gg year−1. This POC enrichment due to the coastally-generated eddies extends for 1000 km from shore. This analysis provides large-scale observational-based evidence that eddies play a quantitatively important role in the offshore transport of coastal water, substantially widening the area influenced by highly productive upwelled waters in the California Current System.
more »
« less
The California Undercurrent as a Source of Upwelled Waters in a Coastal Filament
Abstract In the California Current System, cross‐shore transport of upwelled, nutrient‐rich waters from the coastal margin to the open ocean can occur within intermittent, submesoscale‐to‐mesoscale features such as filaments. Time‐varying spatial gradients within filaments affect net cross‐shore fluxes of physical, biological, and chemical tracers but require high‐resolution measurements to accurately estimate. In June 2017, theCalifornia Current EcosystemLong Term Ecological Research program process cruise (P1706) conducted repeat sections by an autonomousSprayglider and a towed SeaSoar to investigate the role of one such coastal upwelling feature, the Morro Bay filament, which was characterized by enhanced cross‐filament gradients (both physical and biological) and an along‐filament jet. Within the jet, speeds were up to 0.78 m/s and the offshore transport was 1.5 Sverdrups (3.8 Sverdrups) in the upper 100 m (500 m). A climatological data product from the sustained California Underwater Glider Network provided necessary information for water mass differentiation. The analysis revealed that the cold, salty side of the filament carried recently upwelled California Undercurrent water and corresponded to higher chlorophyll‐afluorescence than the warm, fresh side, which carried California Current water. Thus, there was a convergence of heterogeneous water masses within the core of the filament’s offshore‐flowing jet. These water masses have different geographic origins and thermohaline characteristics, which has implications for filament‐related cross‐shore fluxes and submesoscale‐to‐mesoscale biological community structure gradients.
more »
« less
- Award ID(s):
- 1637632
- PAR ID:
- 10449264
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 126
- Issue:
- 2
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. To understand the vertical variations in carbon fluxes inbiologically productive waters, four autonomous carbon flux explorers(CFEs), ship-lowered CTD-interfaced particle-sensitive transmissometer andscattering sensors, and surface-drogued sediment traps were deployed in afilament of offshore flowing, recently upwelled water, during the June 2017California Current Ecosystem – Long Term Ecological Research process study.The Lagrangian CFEs operating at depths from 100–500 m yielded carbon fluxand its partitioning with size from 30 µm–1 cm at three intensivestudy locations within the filament and in waters outside the filament. Sizeanalysis codes intended to enable long-term CFE operations independent ofships are described. Different particle classes (anchovy pellets, copepodpellets, and > 1000 µm aggregates) dominated the 100–150 mfluxes during successive stages of the filament evolution as it progressedoffshore. Fluxes were very high at all locations in the filament; below150 m, flux was invariant or increased with depth at the two locationscloser to the coast. Martin curve b factors (± denotes 95 %confidence intervals) for total particulate carbon flux were +0.37 ± 0.59, +0.85 ± 0.31, −0.24 ± 0.68, and −0.45 ± 0.70 at thethree successively occupied locations within the plume, and in transitionalwaters. Interestingly, the flux profiles for all particles< 400 µm were a much closer fit to the canonical Martinprofile (b−0.86); however, most (typically > 90 %) ofthe particle flux was carried by > 1000 µm sized aggregateswhich increased with depth. Mechanisms to explain the factor of 3 fluxincrease between 150 and 500 m at the mid-plume location are investigated.more » « less
-
null (Ed.)Submesoscale circulations influence momentum, buoyancy and transport of biological tracers and pollutants within the upper turbulent layer. How much and how far into the water column this influence extends remain open questions in most of the global ocean. This work evaluates the behavior of neutrally buoyant particles advected in simulations of the northern Gulf of Mexico by analyzing the trajectories of Lagrangian particles released multiple times at the ocean surface and below the mixed layer. The relative role of meso- and submesoscale dynamics is quantified by comparing results in submesoscale permitting and mesoscale resolving simulations. Submesoscale circulations are responsible for greater vertical transport across fixed depth ranges and also across the mixed layer, both into it and away from it, in all seasons. The significance of the submesoscale-induced transport, however, is far greater in winter. In this season, a kernel density estimation and a detailed vertical mixing analysis are performed. It is found that in the large mesoscale Loop Current eddy, upwelling into the mixed layer is the major contributor to the vertical fluxes, despite its clockwise circulation. This is opposite to the behavior simulated in the mesoscale resolving case. In the “submesoscale soup,” away from the large mesoscale structures such as the Loop Current and its detached eddies, upwelling into the mixed layer is distributed more uniformly than downwelling motions from the surface across the base of the mixed layer. Maps of vertical diffusivity indicate that there is an order of magnitude difference among simulations. In the submesoscale permitting case values are distributed around 10 –3 m 2 s –1 in the upper water column in winter, in agreement with recent indirect estimates off the Chilean coast. Diffusivities are greater in the eastern portion of the Gulf, where the submesoscale circulations are more intense due to sustained density gradients supplied by the warmer and saltier Loop Current.more » « less
-
Abstract A set of realistic coastal simulations in California allows for the exploration of surface gravity wave effects on currents (WEC) in an active submesoscale current regime. We use a new method that takes into account the full surface gravity wave spectrum and produces larger Stokes drift than the monochromatic peak-wave approximation. We investigate two high-wave events lasting several days—one from a remotely generated swell and another associated with local wind-generated waves—and perform a systematic comparison between solutions with and without WEC at two submesoscale-resolving horizontal grid resolutions (dx= 270 and 100 m). WEC results in the enhancement of open-ocean surface density and velocity gradients when the averaged significant wave heightHsis relatively large (>4.2 m). For smaller waves, WEC is a minor effect overall. For the remote swell (strong waves and weak winds), WEC maintains submesoscale structures and accentuates the cyclonic vorticity and horizontal convergence skewness of submesoscale fronts and filaments. The vertical enstrophyζ2budget in cyclonic regions (ζ/f> 2) reveals enhanced vertical shear and enstrophy production via vortex tilting and stretching. Wind-forced waves also enhance surface gradients, up to the point where they generate a small-submesoscale roll-cell pattern with high vorticity and divergence that extends vertically through the entire mixed layer. The emergence of these roll cells results in a buoyancy gradient sink near the surface that causes a modest reduction in the typically large submesoscale density gradients.more » « less
-
Abstract The western boundary current system off southeastern Brazil is composed of the poleward-flowing Brazil Current (BC) in the upper 300 m and the equatorward flowing Intermediate Western Boundary Current (IWBC) underneath it, forming a first-baroclinic mode structure in the mean. Between 22° and 23°S, the BC-IWBC jet develops recurrent cyclonic meanders that grow quasi-stationarily via baroclinic instability, though their triggering mechanisms are not yet well understood. Our study, thus, aims to propose a mechanism that could initiate the formation of these mesoscale eddies by adding the submesoscale component to the hydrodynamic scenario. To address this, we perform a regional 1/50° (∼2 km) resolution numerical simulation using CROCO (Coastal and Regional Ocean Community model). Our results indicate that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instability that can trigger the meanders’ formation. Subsequently, this process generates submesoscale cyclones that contribute, along with baroclinic instability, to the meanders’ growth, resulting in a submesoscale-to-mesoscale inverse cascade. Last, as the mesoscale cyclones grow, they interact with the slope, generating inertially and symmetrically unstable anticyclonic submesoscale vortices and filaments. Significance Statement Off southeastern Brazil, the Brazil Current develops recurrent cyclonic meanders. Such meanders enhance the open-ocean primary productivity and are of societal importance as they are located in a region rich in oil and gas where oil-spill accidents have already happened. This study aims to explore the processes responsible for triggering the formation of these mesoscale eddies. We find that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instabilities that eject submesoscale filaments and vortices and can trigger the meanders’ formation. Such results show that topographically generated submesoscale instabilities can play an important role in the dynamics of mesoscale meanders off southeastern Brazil. Moreover, this may indicate that resolving the submesoscale dynamics in operational numerical models may contribute to an increase in the predictability of the regional eddies.more » « less
An official website of the United States government
