skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: The Distinction Between the Gulf Stream and Its North Wall
Abstract Downstream of Cape Hatteras, the Gulf Stream (GS) is bounded to the north by a sharp temperature front known as the North Wall (NW). Previous studies have generally assumed that variations of the NW and GS are equivalent. Using satellite sea surface height to identify the GS and the 15 °C isotherm at 200‐m depth to represent the NW, this paper examines their similarities and differences during 1993–2016. The NW and GS are geographically close and vary similarly only to the west of 71°W. Downstream of that, they rapidly diverge—and the variances of their latitudes increase by more than a factor of 2—as the GS flows past the New England Seamounts. Evidence is presented to show that the difference in properties of the NW and the GS is related to the presence of mesoscale eddies in the region separating them.  more » « less
Award ID(s):
1634829
PAR ID:
10449289
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
15
ISSN:
0094-8276
Format(s):
Medium: X Size: p. 8943-8951
Size(s):
p. 8943-8951
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract After leaving the U.S. East Coast, the northward flowing Gulf Stream (GS) becomes a zonal jet and carries along its frontal characteristics of strong flow and sea surface temperature gradients into the North Atlantic at midlatitudes. The separation location where it leaves the coast is also an anchor point for the wintertime synoptic storm track across North America to continue to develop and head across the ocean. We examine the meridionalvariabilityof the separated GS path on interannual to decadal time scales as an agent for similar changes in the storm track and blocking variability at midtroposphere from 1979 to 2012. We find that periods of northerly (southerly) GS path are associated with increased (suppressed) excursions of the synoptic storm track to the northeast over the Labrador Sea and reduced (enhanced) Greenland blocking. In both instances, GS shifts lead those in the midtroposphere by a few months. 
    more » « less
  2. Abstract This study investigates Gulf Stream (GS) sea surface temperature (SST) anomalies associated with the extratropical transition (ET) of tropical cyclones (TCs) in the North Atlantic. Composites of western North Atlantic TCs indicate that GS SSTs are warmer, and both large‐ and fine‐scale SST gradients are weaker than average, for TCs that begin the ET process but do not complete it, compared with TCs that do. Further analysis suggests that the associated fine‐scale GS SST gradient anomalies are related to atmospheric processes but not the same as those that are typically associated with the onset of ET. As sensible heat flux gradients and surface diabatic frontogenesis are shown to generally scale with the local SST gradient strength, these results suggest that knowledge of the fine‐scale GS SST gradient in the weeks prior to the arrival of a TC might potentially provide additional information regarding the likelihood of that system completing ET. 
    more » « less
  3. Abstract The strong sea‐surface temperature (SST) gradient associated with the Gulf Stream (GS) is widely acknowledged to play an important role in shaping mid‐latitude weather and climate. Despite this, an index for the GS SST gradient has not yet been standardized in the literature. This paper introduces a monthly index for the large‐scale SST gradient across the separated GS based on the time‐varying GS position detected from sea‐surface height. Analysis suggests that the variations in the monthly average SST gradient throughout the year result primarily from SST variability to the north of the GS, with little contribution from SST to the south. The index exhibits a weak periodicity at ∼2 years. Sea level pressure and turbulent heat flux patterns suggest that variability in the large‐scale SST gradient is related to atmospheric (rather than oceanic) forcing. Ocean‐to‐atmosphere feedback does not persist throughout the year, but there is some evidence of wintertime feedback. 
    more » « less
  4. Abstract Wetlands protect downstream waters by filtering excess nitrogen (N) generated from agricultural and urban activities. Many small ephemeral wetlands, also known as geographically isolated wetlands (GIWs), are hotspots of N retention but have received fewer legal protections due to their apparent isolation from jurisdictional waters. Here, we hypothesize that the isolation of the GIWs make them more efficient N filters, especially when considering transient hydrologic dynamics. We use a reduced complexity model with 30 years of remotely sensed monthly wetland inundation levels in 3700 GIWs across eight wetlandscapes in the US to show how consideration of transient hydrologic dynamics can increase N retention estimates by up to 130%, with greater retention magnification for the smaller wetlands. This effect is more pronounced in semi-arid systems such as the prairies in North Dakota, where transient assumptions lead to 1.8 times more retention, compared to humid landscapes like the North Carolina Pocosins where transient assumptions only lead to 1.4 times more retention. Our results highlight how GIWs have an outsized role in retaining nutrients, and this service is enhanced due to their hydrologic disconnectivity which must be protected to maintain the integrity of downstream waters. 
    more » « less
  5. Summary Affecting biodiversity, plants with larger genome sizes (GS) may be restricted in nutrient‐poor conditions. This pattern has been attributed to their greater cellular nitrogen (N) and phosphorus (P) investments and hypothesized nutrient–investment tradeoffs between cell synthesis and physiological attributes associated with growth. However, the influence of GS on cell size and functioning may also contribute to GS‐dependent growth responses to nutrients.To test whether and how GS is associated with cellular nutrient, stomata, and/or physiological attributes, we examined > 500 forbs and grasses from seven grassland sites conducting a long‐term N and P fertilization experiment.Larger GS plants had increased cellular nutrient contents and larger, but fewer stomata than smaller GS plants. Larger GS grasses (but not forbs) also had lower photosynthetic rates and water‐use efficiencies. However, nutrients had no direct effect on GS‐dependent physiological attributes and GS‐dependent physiological changes likely arise from how GS influences cells. At the driest sites, large GS grasses displayed high water‐use efficiency mostly because transpiration was reduced relative to photosynthesis in these conditions.We suggest that climatic conditions and GS‐associated cell traits that modify physiological responses, rather than resource–investment tradeoffs, largely explain GS‐dependent growth responses to nutrients (especially for grasses). 
    more » « less