skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultra‐Thin Ceramic Substrates for Improved Heat sinking for MicroLEDs
Abstract Micro light emitting diodes (MicroLEDs) provide unrivaled luminance and operating lifetime, which has led to significant activity using devices for display and non‐display applications. The small size and high power density of microLEDs, however, causes increased adverse heating effects that can limit performance. A new generation of electrically insulating high thermal conductivity materials, such as alumina, is proposed to mitigate these thermal effects when used as a substrate as an alternative to glass. This strategy can then be used as a method of passive heat sinking to improve the overall performance of the microLED. In this work, a newly available material, an 80 micron thick alumina ceramic substrate, is shown to yield a 30 % improvement on average in the maximum current drive over a glass substrate.  more » « less
Award ID(s):
1926747
PAR ID:
10449392
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
8
Issue:
19
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MicroLEDs offer an extraordinary combination of high luminance, high energy efficiency, low cost, and long lifetime. These characteristics are highly desirable in various applications, but their usage has, to date, been primarily focused toward next-generation display technologies. Applications of microLEDs in other technologies, such as projector systems, computational imaging, communication systems, or neural stimulation, have been limited. In non-display applications which use microLEDs as light sources, modifications in key electrical and optical characteristics such as external efficiency, output beam shape, modulation bandwidth, light output power, and emission wavelengths are often needed for optimum performance. A number of advanced fabrication and processing techniques have been used to achieve these electro-optical characteristics in microLEDs. In this article, we review the non-display application areas of the microLEDs, the distinct opto-electrical characteristics required for these applications, and techniques that integrate the optical and electrical components on the microLEDs to improve system-level efficacy and performance. 
    more » « less
  2. Lead zirconate titanate (PZT) thin films offer advantages in microelectromechanical systems (MEMSs) including large motion, lower drive voltage, and high energy densities. Depending on the application, different substrates are sometimes required. Self-heating occurs in the PZT MEMS due to the energy loss from domain wall motion, which can degrade the device performance and reliability. In this work, the self-heating of PZT thin films on Si and glass and a film released from a substrate were investigated to understand the effect of substrates on the device temperature rise. Nano-particle assisted Raman thermometry was employed to quantify the operational temperature rise of these PZT actuators. The results were validated using a finite element thermal model, where the volumetric heat generation was experimentally determined from the hysteresis loss. While the volumetric heat generation of the PZT films on different substrates was similar, the PZT films on the Si substrate showed a minimal temperature rise due to the effective heat dissipation through the high thermal conductivity substrate. The temperature rise on the released structure is 6.8× higher than that on the glass substrates due to the absence of vertical heat dissipation. The experimental and modeling results show that the thin layer of residual Si remaining after etching plays a crucial role in mitigating the effect of device self-heating. The outcomes of this study suggest that high thermal conductivity passive elastic layers can be used as an effective thermal management solution for PZT-based MEMS actuators. 
    more » « less
  3. The glass transition temperatures of common binary oxides, including those with low glass-forming ability, are estimated using pair distribution functions (PDFs) from ab initio molecular dynamics simulations. The computed glass transition temperatures for good glass-formers such as silica (SiO2), germania (GeO2), and boron oxide (B2O3) are in agreement with measured values. These calculations are then used to compute the glass transition temperatures of alumina (Al2O3), tantala (Ta2O5), and telluria (TeO2), which are known to exhibit low glass-forming ability. For Al2O3 and Ta2O5, we also compute the simulated caloric curve from molecular dynamics simulations using two-body empirical force fields. Finally, we discuss the possibility of extracting the glass transition temperature by measuring the thermal broadening of the PDFs from scattering measurements. 
    more » « less
  4. The future of aerospace structures is highly dependent on the advancement of reliable and high-performance materials, such as composite materials and metals. Innovation in high resolution non-invasive evaluation of these materials is needed for their qualification and monitoring for structural integrity. Aluminum oxide (or α-alumina) nanoparticles present photoluminescent properties that allow stress and damage sensing via photoluminescence piezospectroscopy. This work describes how these nanoparticles are added into a polymer matrix to create functional coatings that monitor the damage of the underlying composite or metallic substrates. Different volume fractions of α-alumina nanoparticles in the piezospectroscopic coatings were studied for determining the sensitivity of the coatings and successful damage detection was demonstrated for an open-hole tension composite substrate as well as 2024 aluminum tensile substrates with a subsurface notch. 
    more » « less
  5. Abstract Oxide glass, one of the most transformative materials in the modern world, breaks easily under load due to its brittleness. Using classical molecular dynamics simulations, we prepared amorphous alumina by consolidating glass nanoparticles at room temperature. We showed that consolidated amorphous alumina exhibits work hardening ability, hence deforms homogeneously and fractures via necking under tension, while amorphous alumina obtained from the traditional melt‐quench process fractures catastrophically due to severe shear banding. This finding suggests that if processed properly, amorphous oxides could deform and fracture like ductile metals, which will significantly expand the applications of oxide glasses into new areas where load bearing or mechanical reliability is necessary. 
    more » « less