skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Thermodynamic Pathway Leading to Rapid Intensification of Tropical Cyclones in Shear
Abstract Understanding physical processes leading to rapid intensification (RI) of tropical cyclones (TCs) under environmental vertical wind shear is key to improving TC intensity forecasts. This study analyzes the thermodynamic processes that help saturate the TC inner core before RI onset using a column‐integrated moist static energy (MSE) framework. Results indicate that the nearly saturated inner core in the lower‐middle troposphere is achieved by an increase in the column‐integrated MSE, as column water vapor accumulates while the mean column temperature cools. The sign of the column‐integrated MSE tendency depends on the competition between surface enthalpy fluxes, radiation, and vertical wind shear‐induced ventilation effect. The reduction of ventilation above the boundary layer due to vertical alignment is crucial to accumulate the energy within the inner core region. A comparison of the RI simulation with a null simulation further highlights the impact of vortex structure on the thermodynamic state adjustment and TC intensification.  more » « less
Award ID(s):
1822128
PAR ID:
10449406
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
15
ISSN:
0094-8276
Format(s):
Medium: X Size: p. 9241-9251
Size(s):
p. 9241-9251
Sponsoring Org:
National Science Foundation
More Like this
  1. This study explores the spatial and temporal changes in tropical cyclone (TC) thermodynamic and dynamic structures before, near, and during rapid intensification (RI) under different vertical wind shear conditions through four sets of convection-permitting ensemble simulations. A composite analysis of TC structural evolution is performed by matching the RI onset time of each member. Without background flow, the axisymmetric TC undergoes a gradual strengthening of the inner-core vorticity and warm core throughout the simulation. In the presence of moderate environmental shear (5–6 m s−1), both the location and magnitude of the asymmetries in boundary layer radial flow, relative humidity, and vertical motion evolve with the tilt vector throughout the simulation. A budget analysis indicates that tilting is crucial to maintaining the midlevel vortex while stretching and vertical advection are responsible for the upper-level vorticity generation before RI when strong asymmetries arise. Two warm anomalies are observed before the RI onset when the vortex column is tilted. When approaching the RI onset, these two warm anomalies gradually merge into one. Overall, the most symmetric vortex structure is found near the RI onset. Moderately sheared TCs experience an adjustment period from a highly asymmetric structure with updrafts concentrated at the down-tilt side before RI to a more axisymmetric structure during RI as the eyewall updrafts develop. This adjustment period near the RI onset, however, is found to be the least active period for deep convection. TC development under a smaller environmental shear (2.5 m s−1) condition displays an intermediate evolution between ensemble experiments with no background flow and with moderate shear (5–6 m s−1). 
    more » « less
  2. null (Ed.)
    Abstract This study examines how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via downdraft ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS. A strong, positive, linear relationship exists between the low-level vertical mass flux in the inner core and TC intensity. The linear increase in vertical mass flux with intensity is not due to an increased strength of upward motions but, instead, is due to an increased areal extent of strong upward motions ( w > 0.5 m s −1 ). This relationship suggests physical processes that could influence the vertical mass flux, such as downdraft ventilation, influence the intensity of a TC. The azimuthal asymmetry and strength of downdraft ventilation is associated with the vertical tilt of the vortex: downdraft ventilation is located cyclonically downstream from the vertical tilt direction and its strength is associated with the magnitude of the vertical tilt. Importantly, equivalent potential temperature of parcels associated with downdraft ventilation trajectories quickly recovers via surface fluxes in the subcloud layer, but the areal extent of strong upward motions is reduced. Altogether, the modulating effects of downdraft ventilation on TC development are the downward transport of low–equivalent potential temperature, negative-buoyancy air left of shear and into the upshear semicircle, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development. 
    more » « less
  3. Abstract This study investigated the dependence of the early tropical cyclone (TC) weakening rate in response to an imposed moderate environmental vertical wind shear (VWS) on the warm‐core strength and height of the TC vortex using idealized numerical simulations. Results show that the weakening of the warm core by upper‐level ventilation is the primary factor leading to the early TC weakening in response to an imposed environmental VWS. The upper‐level ventilation is dominated by eddy radial advection of the warm‐core air. The TC weakening rate is roughly proportional to the warm‐core strength and height of the initial TC vortex. The boundary‐layer ventilation shows no relationship with the early weakening rate of the TC in response to an imposed moderate VWS. The findings suggest that some previous diverse results regarding the TC weakening in environmental VWS could be partly due to the different warm‐core strengths and heights of the initial TC vortex. 
    more » « less
  4. null (Ed.)
    Abstract This study demonstrates how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via radial ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS environments. Two radial ventilation structures are documented. The first structure is positioned in a similar region as rainband activity and downdraft ventilation (documented in Part I) between heights of 0 and 3 km. Parcels associated with this first structure transport low–equivalent potential temperature air inward and downward left of shear and upshear to suppress convection. The second structure is associated with the vertical tilt of the vortex and storm-relative flow between heights of 5 and 9 km. Parcels associated with this second structure transport low–relative humidity air inward upshear and right of shear to suppress convection. Altogether, the modulating effects of radial ventilation on TC development are the inward transport of low–equivalent potential temperature air, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development. 
    more » « less
  5. Abstract In this study, a quadruply nested, nonhydrostatic tropical cyclone (TC) model is used to investigate how the structure and intensity of a mature TC respond differently to imposed lower‐layer and upper‐layer unidirectional environmental vertical wind shears (VWSs). Results show that TC intensity in both cases decrease shortly after the VWS is imposed but with quite different subsequent evolutions. The TC weakens much more rapidly for a relatively long period in the upper‐layer shear than in the lower‐layer shear, which is found to be related to the stronger storm‐relative asymmetric flow in the middle‐upper troposphere and the larger vertical vortex tilt in the former than in the latter. The stronger storm‐relative flow in the former imposes a greater ventilation of the warm core in the middle‐upper troposphere, leading to a more significant weakening of the storm. The storm in the lower‐layer shear only weakens initially after the VWS is imposed but then experiences a quasi periodic intensity oscillation with a period of about 24 hr. This quasi periodic behavior is found to be closely related to the boundary layer thermodynamic “discharge/recharge” mechanism associated with the activity of shear‐induced outer spiral rainbands. There is no significant intensity oscillation for the storm embedded in the upper‐layer shear, even though outer spiral rainbands develop quasi periodically also. The boundary layer inflow is very weak in that case and the low equivalent potential temperature air induced by downdrafts in outer spiral rainbands therefore cannot penetrate into the inner core but remains in the outer region. 
    more » « less