skip to main content

Title: Combined Effects of Midlevel Dry Air and Vertical Wind Shear on Tropical Cyclone Development. Part I: Downdraft Ventilation
Abstract This study examines how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via downdraft ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS. A strong, positive, linear relationship exists between the low-level vertical mass flux in the inner core and TC intensity. The linear increase in vertical mass flux with intensity is not due to an increased strength of upward motions but, instead, is due to an increased areal extent of strong upward motions ( w > 0.5 m s −1 ). This relationship suggests physical processes that could influence the vertical mass flux, such as downdraft ventilation, influence the intensity of a TC. The azimuthal asymmetry and strength of downdraft ventilation is associated with the vertical tilt of the vortex: downdraft ventilation is located cyclonically downstream from the vertical tilt direction and its strength is associated with the magnitude of the vertical tilt. Importantly, equivalent potential temperature of parcels associated with downdraft ventilation trajectories quickly recovers via surface fluxes in the subcloud layer, but the areal extent of strong upward motions is reduced. Altogether, the modulating effects of downdraft ventilation on TC development are the downward transport of low–equivalent potential temperature, negative-buoyancy air left of shear and into the upshear semicircle, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Page Range / eLocation ID:
763 to 782
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This study demonstrates how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via radial ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS environments. Two radial ventilation structures are documented. The first structure is positioned in a similar region as rainband activity and downdraft ventilation (documented in Part I) between heights of 0 and 3 km. Parcels associated with this first structure transport low–equivalent potential temperature air inward and downward left of shear and upshear to suppress convection. The second structure is associated with the vertical tilt of the vortex and storm-relative flow between heights of 5 and 9 km. Parcels associated with this second structure transport low–relative humidity air inward upshear and right of shear to suppress convection. Altogether, the modulating effects of radial ventilation on TC development are the inward transport of low–equivalent potential temperature air, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development. 
    more » « less
  2. Abstract

    In this study, a quadruply nested, nonhydrostatic tropical cyclone (TC) model is used to investigate how the structure and intensity of a mature TC respond differently to imposed lower‐layer and upper‐layer unidirectional environmental vertical wind shears (VWSs). Results show that TC intensity in both cases decrease shortly after the VWS is imposed but with quite different subsequent evolutions. The TC weakens much more rapidly for a relatively long period in the upper‐layer shear than in the lower‐layer shear, which is found to be related to the stronger storm‐relative asymmetric flow in the middle‐upper troposphere and the larger vertical vortex tilt in the former than in the latter. The stronger storm‐relative flow in the former imposes a greater ventilation of the warm core in the middle‐upper troposphere, leading to a more significant weakening of the storm. The storm in the lower‐layer shear only weakens initially after the VWS is imposed but then experiences a quasi periodic intensity oscillation with a period of about 24 hr. This quasi periodic behavior is found to be closely related to the boundary layer thermodynamic “discharge/recharge” mechanism associated with the activity of shear‐induced outer spiral rainbands. There is no significant intensity oscillation for the storm embedded in the upper‐layer shear, even though outer spiral rainbands develop quasi periodically also. The boundary layer inflow is very weak in that case and the low equivalent potential temperature air induced by downdrafts in outer spiral rainbands therefore cannot penetrate into the inner core but remains in the outer region.

    more » « less
  3. Abstract

    The impact of low-level flow (LLF) direction on the intensification of intense tropical cyclones under moderate deep-layer shear is investigated based on idealized numerical experiments. The background flow profiles are constructed by varying the LLF direction with the same moderate deep-layer shear. When the maximum surface wind speed of the simulation without background flow reaches 70 kt (36 m s−1), the background flow profiles are imposed. After a weakening period in the first 12 h, the members with upshear-left-pointing LLF (fast-intensifying group) intensify faster between 12 and 24 h than those members (slow-intensifying group) with downshear-right-pointing LLF. The fast-intensifying group experiences earlier development of inner-core structures after 12 h, such as potential vorticity below the midtroposphere, upper-level warm core, eyewall axisymmetrization, and radial moist entropy gradient, while the inner-core features of the slow-intensifying group remain relatively weak and asymmetric. The FI group experiences smaller tilt increase and stronger midlevel PV ring development. The upshear-left convection during 6–12 h is responsible for the earlier development of the inner core by reducing ventilation, providing axisymmetric heating, and benefiting the eyewall development. The LLF of the fast-intensifying group enhances surface heat fluxes in the downshear side, resulting in higher energy supply to the upshear-left convection from the boundary layer. In all, this study provides new insights on the impact of LLF direction on intense storms under moderate shear by modulating the surface heat fluxes and eyewall convection.

    more » « less
  4. null (Ed.)
    Abstract The spatial and temporal variation in multiscale structures during the rapid intensification of Hurricane Michael (2018) are explored using a coupled atmospheric–oceanic dataset obtained from NOAA WP-3D and G-IV aircraft missions. During Michael’s early life cycle, the importance of ocean structure is studied to explore how the storm intensified despite experiencing moderate vertical shear. Michael maintained a fairly symmetric precipitation distribution and resisted lateral mixing of dry environmental air into the circulation upshear. The storm also interacted with an oceanic eddy field leading to cross-storm sea surface temperature (SST) gradients of ~2.5°C. This led to the highest enthalpy fluxes occurring left of shear, favoring the sustainment of updrafts into the upshear quadrants and a quick recovery from low-entropy downdraft air. Later in the life cycle, Michael interacted with more uniform and higher SSTs that were greater than 28°C, while vertical shear imposed asymmetries in Michael’s secondary circulation and distribution of entropy. Midlevel (~4–8 km) outflow downshear, a feature characteristic of hurricanes in shear, transported high-entropy air from the eyewall region outward. This outflow created a cap that reduced entrainment across the boundary layer top, protecting it from dry midtropospheric air out to large radii (i.e., >100 km), and allowing for rapid energy increases from air–sea enthalpy fluxes. Upshear, low-level (~0.5–2 km) outflow transported high-entropy air outward, which aided boundary layer recovery from low-entropy downdraft air. This study underscores the importance of simultaneously measuring atmospheric and oceanographic parameters to understand tropical cyclone structure during rapid intensification. 
    more » « less
  5. Abstract

    Tropical cyclone (TC) structure and intensity are strongly modulated by interactions with deep-layer vertical wind shear (VWS)—the vector difference between horizontal winds at 200 and 850 hPa. This paper presents a comprehensive review of more than a century of research on TC–VWS interactions. The literature broadly agrees that a TC vortex becomes vertically tilted, precipitation organizes into a wavenumber-1 asymmetric pattern, and thermal and kinematic asymmetries emerge when a TC encounters an environmental sheared flow. However, these responses depend on other factors, including the magnitude and direction of horizontal winds at other vertical levels between 200 and 850 hPa, the amount and location of dry environmental air, and the underlying sea surface temperature. While early studies investigated how VWS weakens TCs, an emerging line of research has focused on understanding how TCs intensify under moderate and strong VWS (i.e., shear magnitudes greater than 5 m s−1). Modeling and observational studies have identified four pathways to intensification: vortex tilt reduction, vortex reformation, axisymmetrization of precipitation, and outflow blocking. These pathways may not be uniquely different because convection and vortex asymmetries are strongly coupled to each other. In addition to discussing these topics, this review presents open questions and recommendations for future research on TC–VWS interactions.

    more » « less