Summary The soils of the McMurdo Dry Valleys (MDV) of Antarctica are established models for understanding fundamental processes in soil ecosystem functioning (e.g. ecological tipping points, community structuring and nutrient cycling) because the extreme physical environment drastically reduces biodiversity and ecological complexity. Understanding the functioning of MDV soils requires in‐depth knowledge of the diversity of MDV soil species. Protists, which contribute significantly to soil ecosystem functioning worldwide, remain poorly characterized in the MDV. To better assess the diversity of MDV protists, we performed shotgun metagenomics on 18 sites representing a variety of landscape features and edaphic variables. Our results show MDV soil protists are diverse at both the genus (155 of 281 eukaryote genera) and family (120) levels, but comprise only 6% of eukaryotic reads. Protists are structured by moisture, total N and distance from the local coast and possess limited richness in arid (< 5% moisture) and at high elevation sites, known drivers of communities in the MDV. High relative diversity and broad distribution of protists in our study promotes these organisms as key members of MDV soil microbiomes and the MDV as a useful system for understanding the contribution of soil protists to the structure of soil microbiomes. 
                        more » 
                        « less   
                    
                            
                            Aeolian Material Transport and Its Role in Landscape Connectivity in the McMurdo Dry Valleys, Antarctica
                        
                    
    
            Abstract Arid regions, particularly polar and alpine desert environments, have diminished landscape connectivity compared to temperate regions due to limited and/or seasonal hydrological processes. For these environments, aeolian processes play a particularly important role in landscape evolution and biotic community vitality through nutrient and solute additions. The McMurdo Dry Valleys (MDV) are the largest ice‐free area in Antarctica and are potentially a major source of aeolian material for the continent. From this region, samples were collected at five heights (~5, 10, 20, 50, and 100 cm) above the surface seasonally for 2013 through 2015 from Alatna Valley, Victoria Valley, Miers Valley, and Taylor Valley (Taylor Glacier, East Lake Bonney, F6 (Lake Fryxell), and Explorer's Cove). Despite significant geological separation and varying glacial histories, low‐elevation and coastal sites had similar major ion chemistries, as did high‐elevation and inland locations. This locational clustering of compositions was also evident in scanning electron microscopy images and principal component analyses, particularly for samples collected at ~100 cm above the surface. Compared to published soil literature, aeolian material in Taylor Valley demonstrates a primarily down‐valley transport of material toward the coast. Soluble N:P ratios in the aeolian material reflect relative nutrient enrichments seen in MDV soils and lakes, where younger, coastal soils are relatively N depleted, while older, up‐valley soils are relatively P depleted. The aeolian transport of materials, including water‐soluble nutrients, is an important vector of connectivity within the MDV and provides a mechanism to help “homogenize” the geochemistry of both soil and aquatic ecosystems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1637708
- PAR ID:
- 10449408
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 123
- Issue:
- 12
- ISSN:
- 2169-9003
- Page Range / eLocation ID:
- p. 3323-3337
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Airborne electromagnetic surveys collected in December 2011 and November 2018 and three soil sampling transects were used to analyze the spatial heterogeneity of shallow (<4 m) soil properties in lower Taylor Valley (TV), East Antarctica. Soil resistivities from 2011 to 2018 ranged from ∼33 Ωm to ∼3,500 Ωm with 200 Ωm assigned as an upper boundary for brine‐saturated sediments. Elevations below ∼50 m above sea level (masl) typically exhibit the lowest resistivities with resistivity increasing at high elevations on steeper slopes. Soil water content was empirically estimated from electrical resistivities using Archie's Law and range from ∼<1% to ∼68% by volume. An increase in silt‐ and clay‐sized particles at low elevations increases soil porosity but decreases hydraulic conductivity, promoting greater residence times of soil water at low elevations near Lake Fryxell. Soil resistivity variability between 2011 and 2018 shows soils at different stages of soil freeze‐thaw cycles, which are caused predominantly by solar warming of soils as opposed to air temperature. This study furthers the understanding of the hydrogeologic structure of the shallow subsurface in TV and identifies locations of soils that are potentially prone to greater rates of thaw and resulting ecosystem homogenization of soil properties from projected increases in hydrological connectivity across the region over the coming decades.more » « less
- 
            Abstract Primary production is fundamental to ecosystems, and in many extreme environments production is facilitated by microbial mats. Microbial mats are complex assemblages of photo- and heterotrophic microorganisms colonizing sediment and soil surfaces. These communities are the dominant producers of the McMurdo Dry Valleys, Antarctica, where they occupy lentic and lotic environments as well as intermittently wet soils. While the influence of microbial mats on stream nutrient dynamics and lake organic matter cycling is well documented, the influence of microbial mats on underlying soil is less well understood, particularly the effects of microbial mat nitrogen and carbon fixation. Taylor Valley soils occur across variable levels of inorganic phosphorus availability, with the Ross Sea drift containing four times that of the Taylor drifts, providing opportunities to examine how soil geochemistry influences microbial mats and the ecological functions they regulate. We found that inorganic phosphorus availability is positively correlated with microbial mat biomass, pigment concentration and nitrogen fixation potential. Additionally, our results demonstrate that dense microbial mats influence the ecological functioning of underlying soils by enriching organic carbon and total nitrogen stocks (two times higher). This work contributes to ongoing questions regarding the sources of energy fuelling soil food webs and the regional carbon balance in the McMurdo Dry Valleys.more » « less
- 
            Abstract Dust has the potential to play a significant role in the nutrient dynamics of alpine watersheds with important ecological implications. However, little is known about how dust nutrients circulate through the environment and which watershed characteristics facilitate dust impacts on water quality. This study explored the contribution of dust‐deposited nutrients, focusing on a high‐elevation Long Term Ecological Research site, where dust samples have been continuously collected since 2017. We incorporated observed dust nutrient compositions, including fractions of inorganic and organic nitrogen and phosphorus, into a popular hydrological model, the Soil and Water Assessment Tool, and ran simulations for 2019–2021. By comparing simulations with and without dust nutrient inputs, we estimated the impact of dust‐deposited nutrients on individual watershed processes. Results revealed a significant contribution of dust‐deposited nutrients, particularly soluble reactive phosphorus (SRP), to several nutrient cycling and transport pathways. Notably, dust contributed up to 19.3% of the SRP load in annual streamflow (increasing monthly streamflow concentration by up to 10.9 μg ). Spatial analysis of model estimates demonstrated a relationship between topography, soil type, and the cycling and transport of dust nutrients. The largest dust nutrient contributions were found in catchment areas with lower slope and less hydric soils, where other natural mobilization processes may be limited. This comparative modeling approach stresses the importance of including dust nutrients in watershed models, especially in oligotrophic systems, and has potential to validate these findings elsewhere and identify how watershed characteristics may either mollify or accentuate the impacts of dust deposition on mountain freshwater systems.more » « less
- 
            Abstract. The McMurdo Dry Valleys (MDVs) of Antarctica are a polar desertecosystem consisting of alpine glaciers, ice-covered lakes, streams, andexpanses of vegetation-free rocky soil. Because average summer temperaturesare close to 0 ∘C, theMDV ecosystem in general, and glacier melt dynamics in particular, are both closely linked to the energy balance. A slightincrease in incoming radiation or change in albedo can have large effects onthe timing and volume of meltwater. However, the seasonal evolution orspatial variability of albedo in the valleys has yet to fully characterized.In this study, we aim to understand the drivers of landscape albedo changewithin and across seasons. To do so, a box with a camera, GPS, andshortwave radiometer was hung from a helicopter that flew transects four to fivetimes a season along Taylor Valley. Measurements were repeated over threeseasons. These data were coupled with incoming radiation measured at sixmeteorological stations distributed along the valley to calculate thedistribution of albedo across individual glaciers, lakes, and soilsurfaces. We hypothesized that albedo would decrease throughout the australsummer with ablation of snow patches and increasing sediment exposure on theglacier and lake surfaces. However, small snow events (<6 mm waterequivalent) coupled with ice whitening caused spatial and temporalvariability of albedo across the entire landscape. Glaciers frequentlyfollowed a pattern of increasing albedo with increasing elevation, as well asincreasing albedo moving from east to west laterally across the ablationzone. We suggest that spatial patterns of albedo are a function of landscapemorphology trapping snow and sediment, longitudinal gradients in snowfallmagnitude, and wind-driven snow redistribution from east to west alongthe valley. We also compare our albedo measurements to the MODIS albedo productand found that overall the data have reasonable agreement. The mismatch inspatial scale between these two datasets results in variability, which isreduced after a snow event due to albedo following valley-scale gradients ofsnowfall magnitude. These findings highlight the importance of understandingthe spatial and temporal variability in albedo and the close coupling ofclimate and landscape response. This new understanding of landscape albedocan constrain landscape energy budgets, better predict meltwater generationon from MDV glaciers, and how these ecosystems will respond to changingclimate at the landscape scale.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
