skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 26, 2026

Title: Quantifying Dust Nutrient Mobility Through an Alpine Watershed
Abstract Dust has the potential to play a significant role in the nutrient dynamics of alpine watersheds with important ecological implications. However, little is known about how dust nutrients circulate through the environment and which watershed characteristics facilitate dust impacts on water quality. This study explored the contribution of dust‐deposited nutrients, focusing on a high‐elevation Long Term Ecological Research site, where dust samples have been continuously collected since 2017. We incorporated observed dust nutrient compositions, including fractions of inorganic and organic nitrogen and phosphorus, into a popular hydrological model, the Soil and Water Assessment Tool, and ran simulations for 2019–2021. By comparing simulations with and without dust nutrient inputs, we estimated the impact of dust‐deposited nutrients on individual watershed processes. Results revealed a significant contribution of dust‐deposited nutrients, particularly soluble reactive phosphorus (SRP), to several nutrient cycling and transport pathways. Notably, dust contributed up to 19.3% of the SRP load in annual streamflow (increasing monthly streamflow concentration by up to 10.9 μg ). Spatial analysis of model estimates demonstrated a relationship between topography, soil type, and the cycling and transport of dust nutrients. The largest dust nutrient contributions were found in catchment areas with lower slope and less hydric soils, where other natural mobilization processes may be limited. This comparative modeling approach stresses the importance of including dust nutrients in watershed models, especially in oligotrophic systems, and has potential to validate these findings elsewhere and identify how watershed characteristics may either mollify or accentuate the impacts of dust deposition on mountain freshwater systems.  more » « less
Award ID(s):
2011910 1926559
PAR ID:
10571181
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
130
Issue:
1
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate warming in the Arctic is thawing previously frozen soil (permafrost). Permafrost thaw alters landscape hydrology and increases weathering rates, which can increase the delivery of solutes to adjacent waters. Long-term river monitoring of the Kuparuk River (North Slope, Alaska, USA) confirms significant increases in solutes that are indicative of thawing permafrost. However, there is no evidence of an increase in total phosphorus (TP) or soluble reactive phosphorus (SRP), the nutrient that limits primary production in this and similar rivers in the region. Here, we show that Mehlich-3 extractable iron (Fe) and aluminum (Al) impart high P biogeochemical sorption capacities across a range of landscape features that we would expect to promote lateral movement of water and solutes to headwater streams in our study watershed. Reanalysis of a recently published pan-Arctic soils database suggests that this high P sorption capacity could be common in other parts of the Arctic region. We conclude that while warming-induced permafrost thaw may increase the potential for P mobility in our watershed, simultaneous increases in pedogenic secondary Fe and Al minerals may continue to retain P in these soils and limit biological productivity in the adjacent river. We suggest that similar interactions may occur in other areas of the Arctic where comparable biogeochemical conditions prevail. 
    more » « less
  2. Abstract Hydrologic modeling was used to estimate potential changes in nutrients, suspended sediment, and streamflow in various biomass production scenarios with conservation practices under different landscape designs. Two major corn and soybean croplands were selected for study: the South Fork of the Iowa River watershed and the headwater of the Raccoon River watershed. A physically based model, the Soil and Water Assessment Tool, was used to simulate hydrology and water quality under different scenarios with conservation practices and biomass production. Scenarios are based on conservation practices and biomass production; riparian buffer (RB), saturated buffer, and grassed waterways; various stover harvest rates of 30%, 45%, and 70% with and without winter cover crops; and conversion of marginal land to switchgrass. Conservation practices and landscape design with different biomass feedstocks were shown to significantly improve water quality while supporting sustainable biomass production. Model results for nitrogen, phosphorus, and suspended sediments were analyzed temporally at spatial scales that varied from hydrologic response units to the entire watershed. With conservation practices, water quality could potentially improve by reducing nitrogen loads by up to 20%–30% (stover harvest with cover crop), phosphorus loads by 20%–40% (RB), and sediment loads by 30%–70% (stover harvest with cover crop and RB). 
    more » « less
  3. The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration. Here, we report multidecadal observations revealing that the ecosystem in the eastern region of the North Pacific Subtropical Gyre (NPSG) oscillates on subdecadal scales between inorganic phosphorus (P i ) sufficiency and limitation, when P i concentration in surface waters decreases below 50–60 nmol⋅kg −1 . In situ observations and model simulations suggest that sea-level pressure changes over the northwest Pacific may induce basin-scale variations in the atmospheric transport and deposition of Asian dust-associated iron (Fe), causing the eastern portion of the NPSG ecosystem to shift between states of Fe and P i limitation. Our results highlight the critical need to include both atmospheric and ocean circulation variability when modeling the response of open ocean pelagic ecosystems under future climate change scenarios. 
    more » « less
  4. Abstract Quantifying the routing of snowmelt to surface water is critical for predicting the impacts of atmospheric deposition and changing land use on water quality in montane catchments. To investigate solute sources and streamflow in the montane Provo River watershed (Utah, USA), we used time‐series87Sr/86Sr ratios sampled at three sites (Soapstone, Woodland and Hailstone) across a gradient of bedrock types. Soils are influenced by aeolian dust contributions, with distinct87Sr/86Sr ratios relative to siliciclastic bedrock, providing an opportunity to investigate shallow versus deeper flow paths for controlling water chemistry. At the most upstream site (Soapstone), Sr concentrations averaged ~17 μg/L with minimal dilution during snowmelt suggesting subsurface flow paths dominated streamflow. However, a decrease in87Sr/86Sr ratios from ~0.717 during baseflow to as low as ~0.713 during snowmelt indicated the activation of shallow flow paths through dust‐derived soils. In contrast, downstream sites receiving water inputs from Sr‐rich carbonate bedrock (Woodland and Hailstone) exhibited strong dilution of Sr from ~120 to 20 μg/L and an increase in87Sr/86Sr ratios from ~0.7095 to ~0.712 during snowmelt. A three‐component mixing model using87Sr/86Sr ratios and Sr concentrations at Soapstone showed water inputs were dominated by direct snowmelt and flushed soil water during runoff and groundwater during baseflow. At Woodland and Hailstone, a two‐component mixing model showed that the river was a mixture of groundwater and up to 75% upstream channel water during snowmelt. Our findings highlight the importance of flushed soil water for controlling stream water discharge and chemistry during snowmelt, with the signal from the upstream site propagating downstream in a nested catchment. Further, aeolian dust contributes to the solute chemistry of montane streams with potential impacts on water quality along shallow flow paths. Potential contaminants in these surface soils (e.g., Pb deposition in dust) may have significant impacts on water quality during snowmelt runoff. 
    more » « less
  5. Abstract Nitrogen (N) is a necessary element of soil fertility and a limiting nutrient in tallgrass prairie but grazers like bison and cattle can also recycle N. Bison and cattle impact the nitrogen (N) cycle by digesting forage that is consumed, and recycled back to the soil in a more available forms stimulating soil microbial N cycling activities. Yet we do not know how both grazers comparatively affect N cycling in tallgrass prairie. Thus, we investigated if bison and cattle had similar impacts on N cycling in annually burned tallgrass prairie relative to ungrazed conditions over a 3-year period (2020–2022) at the Konza Prairie Biological Station. We examined: soil pH, soil water content, mineralized N, nitrification potential, denitrification potential and extracellular enzyme assays. Interannual variability in precipitation controlled soil water and N cycling microbial activities but grazing effects had a stronger influence on N cycling. We found significant differences and increased soil pH, nitrification and denitrification potential and less N limitation in bison vs cattle grazed soils where bison grazed soils exhibited faster N cycling. Differences between the grazers may be attributed to the different management of bison and cattle as both can impact N cycling. Overall, these data provide some evidence that bison and cattle affect N cycling differently at this study site, and improve the ecological understanding of grazer impacts on N cycling dynamics within the tallgrass prairie ecosystem. 
    more » « less