skip to main content


Title: Nanomaterial‐Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications
Abstract

Nanomaterial‐enabled flexible and stretchable electronics have seen tremendous progress in recent years, evolving from single sensors to integrated sensing systems. Compared with nanomaterial‐enabled sensors with a single function, integration of multiple sensors is conducive to comprehensive monitoring of personal health and environment, intelligent human–machine interfaces, and realistic imitation of human skin in robotics and prosthetics. Integration of sensors with other functional components promotes real‐world applications of the sensing systems. Here, an overview of the design and integration strategies and manufacturing techniques for such sensing systems is given. Then, representative nanomaterial‐enabled flexible and stretchable sensing systems are presented. Following that, representative applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human–machine interactions are provided. To conclude, perspectives on the challenges and opportunities in this burgeoning field are considered.

 
more » « less
Award ID(s):
1728370
NSF-PAR ID:
10449419
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
15
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    Soft (flexible and stretchable) biosensors have great potential in real-time and continuous health monitoring of various physiological factors, mainly due to their better conformability to soft human tissues and organs, which maximizes data fidelity and minimizes biological interference. Most of the early soft sensors focused on sensing physical signals. Recently, it is becoming a trend that novel soft sensors are developed to sense and monitor biochemical signalsin situin real biological environments, thus providing much more meaningful data for studying fundamental biology and diagnosing diverse health conditions. This is essential to decentralize the healthcare resources towards predictive medicine and better disease management. To meet the requirements of mechanical softness and complex biosensing, unconventional materials, and manufacturing process are demanded in developing biosensors. In this review, we summarize the fundamental approaches and the latest and representative design and fabrication to engineer soft electronics (flexible and stretchable) for wearable and implantable biochemical sensing. We will review the rational design and ingenious integration of stretchable materials, structures, and signal transducers in different application scenarios to fabricate high-performance soft biosensors. Focus is also given to how these novel biosensors can be integrated into diverse important physiological environments and scenariosin situ, such as sweat analysis, wound monitoring, and neurochemical sensing. We also rethink and discuss the current limitations, challenges, and prospects of soft biosensors. This review holds significant importance for researchers and engineers, as it assists in comprehending the overarching trends and pivotal issues within the realm of designing and manufacturing soft electronics for biochemical sensing.

     
    more » « less
  3. Abstract

    The development of wireless implantable sensors and integrated systems, enabled by advances in flexible and stretchable electronics technologies, is emerging to advance human health monitoring, diagnosis, and treatment. Progress in material and fabrication strategies allows for implantable electronics for unobtrusive monitoring via seamlessly interfacing with tissues and wirelessly communicating. Combining new nanomaterials and customizable printing processes offers unique possibilities for high‐performance implantable electronics. Here, this report summarizes the recent progress and advances in nanomaterials and printing technologies to develop wireless implantable sensors and electronics. Advances in materials and printing processes are reviewed with a focus on challenges in implantable applications. Demonstrations of wireless implantable electronics and advantages based on these technologies are discussed. Lastly, existing challenges and future directions of nanomaterials and printing are described.

     
    more » « less
  4. Abstract

    Recent advances in nanolithography, miniaturization, and material science, along with developments in wearable electronics, are pushing the frontiers of sensor technology into the large‐scale fabrication of highly sensitive, flexible, stretchable, and multimodal detection systems. Various strategies, including surface engineering, have been developed to control the electrical and mechanical characteristics of sensors. In particular, surface wrinkling provides an effective alternative for improving both the sensing performance and mechanical deformability of flexible and stretchable sensors by releasing interfacial stress, preventing electrical failure, and enlarging surface areas. In this study, recent developments in the fabrication strategies of wrinkling structures for sensor applications are discussed. The fundamental mechanics, geometry control strategies, and various fabricating methods for wrinkling patterns are summarized. Furthermore, the current state of wrinkling approaches and their impacts on the development of various types of sensors, including strain, pressure, temperature, chemical, photodetectors, and multimodal sensors, are reviewed. Finally, existing wrinkling approaches, designs, and sensing strategies are extrapolated into future applications.

     
    more » « less
  5. Abstract

    Recent advances in soft sensors and flexible electronics offer various applications in detecting physical, electrical, and chemical signals. However, there are still technical barriers in current mechanical, electrical, and material properties for enhanced signal sensing. When measuring signals from the human skin, minimizing the skin‐sensor contact impedance is still challenging while maximizing sensitivity through optimized materials and soft electronics. Here, this review summarizes recent advances in materials, manufacturing, and integration technologies to develop ultrathin soft sensors for monitoring various human physiological signals. The enhancements in soft and compliant structures and mechanical properties are critical to making reliable wearable electronic systems. This article shares the details of soft sensors, integration processes, manufacturing methods, and their applications to target physical, electrical, and chemical signals. In addition, the limitations and current trends in developing multifunctional sensors, self‐powered devices, and integration with external stimuli systems are discussed.

     
    more » « less