Abstract Anthropogenic habitat fragmentation—the breaking up of natural landscapes—is a pervasive threat to biodiversity and ecosystem function world‐wide. Fragmentation results in a mosaic of remnant native habitat patches embedded in human‐modified habitat known as the ‘matrix’. By introducing novel environmental conditions in matrix habitats and reducing connectivity of native habitats, fragmentation can dramatically change how organisms experience their environment. The effects of fragmentation can be especially important in urban landscapes, which are expanding across the globe. Despite this surging threat and the importance of microbiomes for ecosystem services, we know very little about how fragmentation affects microbiomes and even less about their consequences for plant–microbe interactions in urban landscapes.By combining field surveys, microbiome sequencing and experimental mesocosms, we (1) investigated how microbial community diversity, composition and functional profiles differed between 15 native pine rockland fragments and the adjacent urban matrix habitat, (2) identified habitat attributes that explained significant variation in microbial diversity of native core habitat compared to urban matrix and (3) tested how changes in urbanized and low connectivity microbiomes affected plant community productivity.We found urban and native microbiomes differed substantively in diversity, composition and functional profiles, including symbiotic fungi decreasing 81% and pathogens increasing 327% in the urban matrix compared to native habitat. Furthermore, fungal diversity rapidly declined as native habitats became increasingly isolated, with ~50% of variation across the landscape explained by habitat connectivity alone. Interestingly, microbiomes from native habitats increased plant productivity by ~300% while urban matrix microbiomes had no effect, suggesting that urbanization may decouple beneficial plant–microbe interactions. In addition, microbial diversity within native habitats explained significant variation in plant community productivity, with higher productivity linked to more diverse microbiomes from more connected, larger fragments.Synthesis. Taken together, our study not only documents significant changes in microbial diversity, composition and functions in the urban matrix, but also supports that two aspects of habitat fragmentation—the introduction of a novel urban matrix and reduced habitat connectivity—disrupt microbial effects on plant community productivity, highlighting preservation of native microbiomes as critical for productivity in remnant fragments. 
                        more » 
                        « less   
                    
                            
                            Microbiome‐mediated effects of habitat fragmentation on native plant performance
                        
                    
    
            Summary Habitat fragmentation is a leading cause of biodiversity and ecosystem function loss in the Anthropocene. Despite the importance of plant–microbiome interactions to ecosystem productivity, we have limited knowledge of how fragmentation affects microbiomes and even less knowledge of its consequences for microbial interactions with plants.Combining field surveys, microbiome sequencing, manipulative experiments, and random forest models, we investigated fragmentation legacy effects on soil microbiomes in imperiled pine rocklands, tested how compositional shifts across 14 fragmentation‐altered soil microbiomes affected performance and resource allocation of three native plant species, and identified fragmentation‐responding microbial families underpinning plant performance.Legacies of habitat fragmentation were associated with significant changes in microbial diversity and composition (across three of four community axes). Experiments showed plants often strongly benefited from the microbiome’s presence, but fragmentation‐associated changes in microbiome composition also significantly affected plant performance and resource allocation across all seven metrics examined. Finally, random forest models identified ten fungal and six bacterial families important for plant performance that changed significantly with fragmentation.Our findings not only support the existence of significant fragmentation effects on natural microbiomes, but also demonstrate for the first time that fragmentation‐associated changes in microbiomes can have meaningful consequences for native plant performance and investment. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10449442
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 232
- Issue:
- 4
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 1823-1838
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Allelopathy is a common and important stressor that shapes plant communities and can alter soil microbiomes, yet little is known about the direct effects of allelochemical addition on bacterial and fungal communities or the potential for allelochemical‐selected microbiomes to mediate plant performance responses, especially in habitats naturally structured by allelopathy.Here, we present the first community‐wide investigation of microbial mediation of allelochemical effects on plant performance by testing how allelopathy affects soil microbiome structure and how these microbial changes impact germination and productivity across 13 plant species.The soil microbiome exhibited significant changes to ‘core’ bacterial and fungal taxa, bacterial composition, abundance of functionally important bacterial and fungal taxa, and predicted bacterial functional genes after the addition of the dominant allelochemical native to this habitat. Furthermore, plant performance was mediated by the allelochemical‐selected microbiome, with allelopathic inhibition of plant productivity moderately mitigated by the microbiome.Through our findings, we present a potential framework to understand the strength of plant–microbial interactions in the presence of environmental stressors, in which frequency of the ecological stress may be a key predictor of microbiome‐mediation strength.more » « less
- 
            Summary Fire plays a major role in structuring plant communities across the globe. Interactions with soil microbes impact plant fitness, scaling up to influence plant populations and distributions. Here we present the first factorial manipulation of both fire and soil microbiome presence to investigate their interactive effects on plant performance across a suite of plant species with varying life history traits.We conducted fully factorial experiments on 11 species from the Florida scrub ecosystem to test plant performance responses to soils with varying fire histories (36 soil sources), the presence/absence of a microbiome, and exposure to an experimental burn.Results revealed interactive ‘pulse’ effects between fire and the soil microbiome on plant performance. On average, post‐fire soil microbiomes strongly reduced plant productivity compared to unburned or sterilized soils. Interestingly, longer‐term fire ‘legacy’ effects had minor impacts on plant performance and were unrelated to soil microbiomes.While pulse fire effects on plant–microbiome interactions are short‐term, they could have long‐term consequences for plant communities by establishing differential microbiome‐mediated priority effects during post‐disturbance succession. The prominence of pulse fire effects on plant–microbe interactions has even greater import due to expected increases in fire disturbances resulting from anthropogenic climate change.more » « less
- 
            Abstract Nutrient enrichment impacts ecosystems globally. Population history, especially past resource environments, of numerically dominant plant species may affect their responses to subsequent changes in nutrient availability. Eutrophication can also alter plant–microbe interactions via direct effects on associated microbial communities or indirect effects on dominant species’ biomass production/allocation as a result of modified plant–soil interactions.We combined a greenhouse common garden and a field reciprocal transplant of a salt marsh foundation species (Spartina alterniflora) within a long‐term, whole‐ecosystem, nutrient‐enrichment study to determine whether enrichment affects plant production and microbial community structure differently depending on plant population history. For the greenhouse portion, we collected 20S. alternifloragenotypes—10 from an enriched creek that had received elevated nutrient inputs for 10 years and 10 from an unenriched reference creek—and reared them in a common garden for 1 year. For the field portion, we conducted a 2‐year, fully crossed reciprocal transplant experiment with two gardens each at the enriched and unenriched sites; we examined the effects of source site (i.e. population history), garden site and plant genotype.After 2 years, plants in enriched gardens had higher above‐ground biomass and altered below‐ground allocation compared to plants in unenriched gardens. However, performance also depended on plant population history: plants from the enriched site had decreased above‐ground and rhizome production compared to plants from the unenriched site, most notably in unenriched gardens. In addition, almost all above‐ and below‐ground traits varied depending on plant genotypic identity.Effects of nutrient enrichment on the associated microbial community were also pronounced. Following 1 year in common garden, microbial community structure varied by plant population history andS. alternifloragenotypic identity. However, at the end of the reciprocal transplant, microbial communities differed primarily between enriched and unenriched gardens.Synthesis. Nutrient enrichment can impact plant foundation species and associated soil microbes in the short term. Most importantly, nutrient enrichment can also have long‐lasting effects on plant populations and associated microbial communities that potentially compromise their ability to respond to changing resource conditions in the future.more » « less
- 
            Abstract The plant microbiome is critical to plant health and is degraded with anthropogenic disturbance. However, the value of re‐establishing the native microbiome is rarely considered in ecological restoration. Arbuscular mycorrhizal (AM) fungi are particularly important microbiome components, as they associate with most plants, and later successional grassland plants are strongly responsive to native AM fungi.With five separate sites across the United States, we inoculated mid‐ and late successional plant seedlings with one of three types of native microbiome amendments: (a) whole rhizosphere soil collected from local old‐growth, undisturbed grassland communities in Illinois, Kansas or Oklahoma, (b) laboratory cultured AM fungi from these same old‐growth grassland sites or (c) no microbiome amendment. We also seeded each restoration with a diverse native seed mixture. Plant establishment and growth was followed for three growing seasons.The reintroduction of soil microbiome from native ecosystems improved restoration establishment.Including only native arbuscular mycorrhizal fungal communities produced similar improvements in plant establishment as what was found with whole soil microbiome amendment. These findings were robust across plant functional groups.Inoculated plants (amended with either AM fungi or whole soil) also grew more leaves and were generally taller during the three growing seasons.Synthesis and applications. Our research shows that mycorrhizal fungi can accelerate plant succession and that the reintroduction of both whole soil and laboratory cultivated native mycorrhizal fungi can be used as tools to improve native plant restoration following anthropogenic disturbance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
