Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hypoxia‐induced polymerization of sickle hemoglobin and the related ion diffusion across cell membrane can lead to changes in cell dielectric properties, which can potentially serve as label‐free, diagnostic biomarkers for sickle cell disease. This article presents a microfluidic‐based approach with on‐chip gas control for the impedance spectroscopy of suspended cells within the frequency range of 40 Hz to 110 MHz. A comprehensive bioimpedance of sickle cells under both normoxia and hypoxia is achieved rapidly (within ∼7 min) and is appropriated by small sample volumes (∼2.5 μL). Analysis of the sensing modeling is performed to obtain optimum conditions for dielectric spectroscopy of sickle cell suspensions and for extraction of single cell properties from the measured impedance spectra. The results of sickle cells show that upon hypoxia treatment, cell interior permittivity and conductivity increase, while cell membrane capacitance decreases. Moreover, the relative changes in cell dielectric parameters are found to be dependent on the sickle and fetal hemoglobin levels. In contrast, the changes in normal red blood cells between the hypoxia and normoxia states are unnoticeable. The results of sickle cells may serve as a reference to design dielectrophoresis‐based cell sorting and electrodeformation testing devices that require cell dielectric characteristics as input parameters. The demonstrated method for dielectric characterization of single cells from the impedance spectroscopy of cell suspensions can be potentially applied to other cell types and under varied gas conditions.more » « less
-
Abstract This article presents the development and testing of a low‐cost (<$60), portable, electrical impedance‐based microflow cytometer for single‐cell analysis under a controlled oxygen microenvironment. The system is based on an AD5933 impedance analyzer chip, a microfluidic chip, and an Arduino microcontroller operated by a custom Android application. A representative case study on human red blood cells (RBCs) affected by sickle cell disease is conducted to demonstrate the capability of the cytometry system. Impedance values of sickle blood samples exhibit remarkable deviations from the common reference line obtained from two normal blood samples. Such deviation is quantified by a conformity score, which allows for the measurement of intrapatient and interpatient variations of sickle cell disease. A low conformity score under oxygenated conditions or drastically different conformity scores between oxygenated and deoxygenated conditions can be used to differentiate a sickle blood sample from normal. Furthermore, an equivalent circuit model of a suspended biological cell is used to interpret the electrical impedance of single flowing RBCs. In response to hypoxia treatment, all samples, regardless of disease state, exhibit significant changes in at least one single‐cell electrical property, that is, cytoplasmic resistance and membrane capacitance. The overall response to hypoxia is less in normal cells than those affected by sickle cell disease, where the change in membrane capacitance varies from −23% to seven times as compared with −17% in normal cells. The results reported in this article suggest that the developed method of testing demonstrates the potential application for a low‐cost screening technique for sickle cell disease and other diseases in the field and low‐resource settings. The developed system and methodology can be extended to analyze cellular response to hypoxia in other cell types.more » « less
-
Free, publicly-accessible full text available December 5, 2025
-
In this paper, we report on the electrical impedance measurement of human endothelial cellular networks and show the existence of emergent power law behavior in its admittance. In particular, we find that the admittance scales with the frequency ω as ωα, with the exponent that varies with the degree of the disruption caused by the inflammation in the endothelial cellular network. We demonstrate that the power law of the measured electrical admittance can be understood by a simple percolation model of a large R–C (resistor–capacitor) network, which allows us to relate quantitatively and the intensity of inflammation. Our results suggest that the electrical properties of heterogeneous biomaterials, like living tissues, behave as a complex microstructural network.more » « less
An official website of the United States government
