skip to main content


Title: Synthesis of a heterotelechelic helical poly(methacrylamide) and its incorporation into a supramolecular triblock copolymer
We report the first heterotelechelic helical poly(methacrylamide) (PMAc) bearing orthogonal supramolecular binding sites on its chain-ends synthesized through a combination of reversible addition–fragmentation chain-transfer (RAFT) polymerization and thiol–bromo “click” chemistry. The heterotelechelic PMAc was assembled with two monotelechelic polymers featuring different secondary structures, namely a coil-like poly(styrene) and a helical poly(isocyanide), resulting in the formation of a coil–helix–helix supramolecular triblock copolymer through orthogonal metal coordination and hydrogen bonding interactions. Triblock assembly was confirmed through 1 H NMR spectroscopy, isothermal titration calorimetry (ITC) and viscometry. The individual polymer blocks retained their secondary structures in the final triblock copolymer, as evidenced by circular dichroism (CD) spectroscopy. Our synthetic strategy expands the toolbox of triblock copolymers featuring structural motifs similar to the ones found in proteins and provides the potential for the development of other complex multifunctional polymeric ensembles.  more » « less
Award ID(s):
1902917
NSF-PAR ID:
10175795
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
10
Issue:
37
ISSN:
1759-9954
Page Range / eLocation ID:
5087 to 5093
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The fabrication of truly hierarchically folded single‐chain polymeric nanoparticles with primary, secondary, and defined 3D architecture is still an unfulfilled goal. In this contribution, a polymer is reported that folds into a well‐defined 3D structure from a synthetic sheet‐helix block copolymer. The sheet‐like poly(p‐phenylene vinylene) (PPV) block is synthesized via the ring‐opening metathesis polymerization of a thymine‐bearing dialkoxy‐substituted [2.2]paracyclophane‐1,9‐diene. The PPV block is terminated with a Pd complex using a Pd‐containing chain‐terminating agent. The terminal Pd complex catalyzes the polymerization of isocyanide monomers with side‐chains containing either a chiral menthol or an achiral diaminopyridine resulting in the formation of a helical poly(isocyanide) (PIC) random copolymer. The PIC side‐chains are capable of engaging in complementary hydrogen‐bonding with thymine units along the PPV block resulting in the folding of the two secondary structural domains into a well‐defined 3D structure. The folding and unfolding of the polymer in both chloroform and THF are monitored using dynamic light scattering and NMR spectroscopy. This work is the first example of a hierarchically folded synthetic polymer featuring a defined 3D structure achieved by using two different polymer backbones with two distinct secondary structures.

     
    more » « less
  2. Abstract

    True tertiary architectures with defined local secondary structures are rare in synthetic systems. Adapting well‐developed synthetic building blocks and controlling their folding through diverse interactions can be a general approach toward this goal. In this contribution, the synthesis of 3D hierarchical assemblies with distinct secondary domains formed through the intramolecular folding of a block copolymer containing a coil‐like poly(styrene) (PS) block with a helical poly(isocyanide) block induced by phenyl‐pentafluorophenyl quadrupole interactions is reported. The PS block is prepared via atom‐transfer radical polymerization and end functionalized with a nickel complex that serves as a macroinitiator for the polymerization of chiral isocyanides bearing pentafluorophenyl pendants. The folding behavior of the coil‐helix block copolymers is investigated by dynamic light scattering, NMR spectroscopy, wide‐angle X‐ray scattering, and differential scanning calorimetry.

     
    more » « less
  3. null (Ed.)
    We report poly(isocyanide)-based random copolymers (co-PIC) featuring alkoxycarbonyl-based side-chains synthesized via the metal-catalyzed controlled polymerization of chiral and achiral isocyanide monomers. The pyridine-functionalized achiral monomer provides functional sites while the chiral monomer drives the formation of a one-handed preferred helix. The side-chain functionalized helical polymer undergoes self-assembly with palladated pincer ligands, as evidenced by 1H NMR and UV-Vis spectroscopies. Circular dichroism (CD) spectroscopy confirms that the side-chain self-assembly does not affect the backbone helicity. We construct supramolecular helical brush copolymers via the metal coordination of the co-PIC backbone with telechelic poly(styrene)s. 1H NMR and UV-Vis spectroscopies confirm the metal coordination, and CD measurements suggest that the backbone retains its helical conformation. Additionally, viscometry measurements verify the formation of high molecular weight polymers while dynamic light scattering confirms the increasing hydrodynamic radii of the resulting supramolecular brush copolymers. Our methodology constructs complex 3D materials with fully synthetic, secondary structure containing building blocks. We view this as a platform for building architecturally controlled 3D supramolecular materials with high degrees of complexity. 
    more » « less
  4. Directing polymer self-assembly through noncovalent interactions is a powerful way to control the structure and function of nanoengineered materials. Dynamic hydrogen bonds are particularly useful for materials with structures that change over time or in response to specific stimuli. In the present work, we use the supramolecular association of urea moieties to manipulate the morphology, thermal response, and mechanical properties of soft polymeric hydrogels. Urea-terminated poly(isopropyl glycidyl ether)- b -poly(ethylene oxide)- b -poly(isopropyl glycidyl ether) ABA triblock copolymers were synthesized using controlled, anionic ring-opening polymerization and subsequent chain-end functionalization. Triblock copolymers with hydroxy end-groups were incapable of hydrogelation, while polymers terminated with meta -bis-urea motifs formed robust gels at room temperature. Rheometric analysis of the bulk gels, variable-temperature infrared spectroscopy (VT-IR), differential scanning calorimetry (DSC), and small-angle X-ray scattering (SAXS) confirmed the formation of structured hydrogels via association of the meta -bis-urea end-groups. Monourea end-groups did not result in the same regular structure as the meta -bis-urea. In future, the reported hydrogels could be useful for elastomeric, shape-morphing 3D-printed constructs, or as biomimetic scaffolds with precisely tailored porosity and mechanical properties. 
    more » « less
  5. Chain exchange behaviors in self-assembled block copolymer (BCP) nanoparticles (NPs) at room temperature are investigated through observations of structural differences between parent and binary systems of BCP NPs with and without crosslinked domains. Pairs of linear diblock or triblock, and branched star-like polystyrene-poly(2-vinylpyridine) (PS-PVP) copolymers that self-assemble in a PVP-selective mixed solvent into BCP NPs with definite differences in size and self-assembled morphology are combined by diverse mixing protocols and at different crosslinking densities to reveal the impact of chain exchange between BCP NPs. Clear structural evolution is observed by dynamic light scattering and AFM and TEM imaging, especially in a blend of triblock + star copolymer BCP NPs. The changes are ascribed to the chain motion inherent in the dynamic equilibrium, which drives the system to a new structure, even at room temperature. Chemical crosslinking of PVP corona blocks suppresses chain exchange between the BCP NPs and freezes the nanostructures at a copolymer crosslinking density (CLD) of ∼9%. This investigation of chain exchange behaviors in BCP NPs having architectural and compositional complexity and the ability to moderate chain motion through tailoring the CLD is expected to be valuable for understanding the dynamic nature of BCP self-assemblies and diversifying the self-assembled structures adopted by these systems. These efforts may guide the rational construction of novel polymer NPs for potential use, for example, as drug delivery platforms and nanoreactors. 
    more » « less