Abstract Inclusion of edaphic conditions in biogeographical studies typically provides a better fit and deeper understanding of plant distributions. Increased reliance on soil data calls for easily accessible data layers providing continuous soil predictions worldwide. Although SoilGrids provides a potentially useful source of predicted soil data for biogeographic applications, its accuracy for estimating the soil characteristics experienced by individuals in small‐scale populations is unclear. We used a biogeographic sampling approach to obtain soil samples from 212 sites across the midwestern and eastern United States, sampling only at sites where there was a population of one of the 22 species inLobeliasect.Lobelia. We analyzed six physical and chemical characteristics in our samples and compared them with predicted values from SoilGrids. Across all sites and species, soil texture variables (clay, silt, sand) were better predicted by SoilGrids (R2: .25–.46) than were soil chemistry variables (carbon and nitrogen,R2 ≤ .01; pH,R2: .19). While SoilGrids predictions rarely matched actual field values for any variable, we were able to recover qualitative patterns relating species means and population‐level plant characteristics to soil texture and pH. Rank order of species mean values from SoilGrids and direct measures were much more consistent for soil texture (SpearmanrS = .74–.84; allp < .0001) and pH (rS = .61,p = .002) than for carbon and nitrogen (p > .35). Within the speciesL. siphilitica, a significant association, known from field measurements, between soil texture and population sex ratios could be detected using SoilGrids data, but only with large numbers of sites. Our results suggest that modeled soil texture values can be used with caution in biogeographic applications, such as species distribution modeling, but that soil carbon and nitrogen contents are currently unreliable, at least in the region studied here.
more »
« less
Watershed‐Scale Effective Hydraulic Properties of the Continental United States
Abstract In land surface models (LSMs), the hydraulic properties of the subsurface are commonly estimated according to the texture of soils at the Earth's surface. This approach ignores macropores, fracture flow, heterogeneity, and the effects of variable distribution of water in the subsurface oneffectivewatershed‐scale hydraulic variables. Using hydrograph recession analysis, we empirically constrain estimates of watershed‐scale effective hydraulic conductivities (K) and effective drainable aquifer storages (S) of all reference watersheds in the conterminous United States for which sufficient streamflow data are available (n = 1,561). Then, we use machine learning methods to model these properties across the entire conterminous United States. Model validation results in high confidence for estimates of log(K) (r2 > 0.89; 1% < bias < 9%) and reasonable confidence forS(r2 > 0.83; −70% < bias < −18%). Our estimates of effectiveKare, on average, two orders of magnitude higher than comparable soil‐texture‐based estimates of averageK, confirming the importance of soil structure and preferential flow pathways at the watershed scale. Our estimates of effectiveScompare favorably with recent global estimates of mobile groundwater and are spatially heterogeneous (5–3,355 mm). Because estimates ofSare much lower than the global maximums generally used in LSMs (e.g., 5,000 mm in Noah‐MP), they may serve both to limit model spin‐up time and to constrain model parameters to more realistic values. These results represent the first attempt to constrain estimates of watershed‐scale effective hydraulic variables that are necessary for the implementation of LSMs for the entire conterminous United States.
more »
« less
- Award ID(s):
- 1639268
- PAR ID:
- 10449519
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 13
- Issue:
- 6
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Soil is the largest terrestrial carbon (C) reservoir and a large potential source or sink of atmospheric CO₂. Soil C models have usually focused on refining representations of microbe‐mediated C turnover, whereas lateral hydrologic C fluxes have largely been ignored at regional and global scales. Here, we provide large‐scale estimates of hydrologic export of soil organic carbon (SOC) and its effects on bulk soil C turnover rates. Hydrologic export of SOC ranged from nearly 0 to 12 g C m−2yr−1amongst catchments across the conterminous United States, and total export across this region was 14 (95% CI 4‐41) Tg C/yr. The proportion of soil C turnover attributed to hydrologic export ranged from <1% to 20%, and averaged 0.97% (weighted by catchment area; 95% CI 0.3%–2.6%), with the lowest values in arid catchments. Ignoring hydrologic export in C cycle models might lead to overestimation of SOC stocks by 0.3–2.6 Pg C for the conterminous United States. High uncertainty in hydrologic C export fluxes and potentially substantial effects on soil C turnover illustrate the need for research aimed at improving our mechanistic understanding of the processes regulating hydrologic C export.more » « less
-
Abstract This study synthesizes two different methods for estimating hydraulic conductivity (K) at large scales. We derive analytical approaches that estimate K and apply them to the contiguous United States. We then compare these analytical approaches to three‐dimensional, national gridded K data products and three transmissivity (T) data products developed from publicly available sources. We evaluate these data products using multiple approaches: comparing their statistics qualitatively and quantitatively and with hydrologic model simulations. Some of these datasets were used as inputs for an integrated hydrologic model of the Upper Colorado River Basin and the comparison of the results with observations was used to further evaluate the K data products. Simulated average daily streamflow was compared to daily flow data from 10 USGS stream gages in the domain, and annually averaged simulated groundwater depths are compared to observations from nearly 2000 monitoring wells. We find streamflow predictions from analytically informed simulations to be similar in relative bias and Spearman's rho to the geologically informed simulations.R‐squared values for groundwater depth predictions are close between the best performing analytically and geologically informed simulations at 0.68 and 0.70 respectively, with RMSE values under 10 m. We also show that the analytical approach derived by this study produces estimates of K that are similar in spatial distribution, standard deviation, mean value, and modeling performance to geologically‐informed estimates. The results of this work are used to inform a follow‐on study that tests additional data‐driven approaches in multiple basins within the contiguous United States.more » « less
-
ABSTRACT The importance of subsurface water dynamics, such as water storage and flow partitioning, is well recognised. Yet, our understanding of their drivers and links to streamflow generation has remained elusive, especially in small headwater streams that are often data‐limited but crucial for downstream water quantity and quality. Large‐scale analyses have focused on streamflow characteristics across rivers with varying drainage areas, often overlooking the subsurface water dynamics that shape streamflow behaviour. Here we ask the question:What are the climate and landscape characteristics that regulate subsurface dynamic storage, flow path partitioning, and dynamics of streamflow generation in headwater streams?To answer this question, we used streamflow data and a widely‐used hydrological model (HBV) for 15 headwater catchments across the contiguous United States. Results show that climate characteristics such as aridity and precipitation phase (snow or rain) and land attributes such as topography and soil texture are key drivers of streamflow generation dynamics. In particular, steeper slopes generally promoted more streamflow, regardless of aridity. Streams in flat, rainy sites (< 30% precipitation as snow) with finer soils exhibited flashier regimes than those in snowy sites (> 30% precipitation as snow) or sites with coarse soils and deeper flow paths. In snowy sites, less weathered, thinner soils promoted shallower flow paths such that discharge was more sensitive to changes in storage, but snow dampened streamflow flashiness overall. Results here indicate that land characteristics such as steepness and soil texture modify subsurface water storage and shallow and deep flow partitioning, ultimately regulating streamflow response to climate forcing. As climate change increases uncertainty in water availability, understanding the interacting climate and landscape features that regulate streamflow will be essential to predict hydrological shifts in headwater catchments and improve water resources management.more » « less
-
Abstract Accurate groundwater representation in land surface models (LSMs) is vital for water and energy cycle studies, water resource assessments, and climate projections. Yet, many LSMs do not consider key processes including lateral groundwater flow and aquifer pumping, especially at the global scale. This study simulates these processes using an enhanced version of the Community Land Model (CLM5) and evaluates their roles at three spatial resolutions (0.5°, 0.25°, 0.1°). Results show that lateral flow strongly modulates water table depth and capillary rise at all resolutions. The magnitude of mean lateral flow increases from 25 mm/year at 0.5° to 36 mm/year at 0.25°, and 52 mm/year at 0.1° resolution, with pumping inducing lateral flow even at 0.5° (∼50 km), a typical grid size in global LSMs. Further, lateral flow alters runoff in regions with high recharge and shallow water table (e.g., eastern North America and Amazon basin), and soil moisture and ET in regions with comparatively low recharge and deeper water table (e.g., western North America, central Asia, and Australia) through enhanced capillary rise. Runoff alteration by lateral flow increases substantially with resolution, from a maximum of 15 mm/month at 0.5° to 20 mm/month and 25 mm/month at 0.25° and 0.1°, respectively; the impact of resolution on soil moisture and ET is less pronounced. While the model does not fully capture deeper water tables—warranting further enhancements—it provides valuable insights on how lateral groundwater flow impacts land surface processes, highlighting the importance of lateral groundwater flow and pumping in global LSMs.more » « less
An official website of the United States government
