skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards a Mechanistic Understanding of Precipitation Over the Far Eastern Tropical Pacific and Western Colombia, One of the Rainiest Spots on Earth
Abstract According to Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellite precipitation composites, a broad maritime area over the far eastern tropical Pacific and western Colombia houses one of the rainiest spots on Earth. This study aims to present a suite of mechanistic drivers that help create such a world‐record‐breaking rainy spot. Previous research has shown that this oceanic and nearly continental precipitation maximum has a strong early morning precipitation peak and a high density of mesoscale convective systems. We examined new and unique observational evidence highlighting the role of both dynamical and thermodynamical drivers in the activation and duration of organized convection. Results showed the existence of a rather large combination of mechanisms, including: (1) dynamics of the Choco (ChocoJet) and Caribbean Low‐Level Jets along their confluence zone, including the Panama semi‐permanent low; (2) ChocoJet deceleration offshore is favored by land breeze, enhancing the nighttime and early morning low‐level convergence; (3) a wind sheared environment that conforms to the long‐lived squall line theory; (4) action of mid‐level gravity waves, which further support the strong diurnal variability; and (5) mesoscale convective vortices related to subsidence in the stratiform region and top‐heavy mass flux profiles. This study emphasizes the multiscale circulation and thermodynamics mechanisms associated with the formation of one of the rainiest spots on Earth and showcases new observations gathered during the Organization of Tropical East Pacific Convection field campaign (OTREC; August–September, 2019) that support the outlined mechanisms.  more » « less
Award ID(s):
1758513
PAR ID:
10449564
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
5
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organized deep convective activity has been routinely monitored by satellite precipitation radar from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM). Organized deep convective activity is found to increase not only with sea surface temperature (SST) above 27°C, but also with low-level wind shear. Precipitation shows a similar increasing relationship with both SST and low-level wind shear, except for the highest low-level wind shear. These observations suggest that the threshold for organized deep convection and precipitation in the tropics should consider not only SST, but also vertical wind shear. The longwave cloud radiative feedback, measured as the tropospheric longwave cloud radiative heating per amount of precipitation, is found to generally increase with stronger organized deep convective activity as SST and low-level wind shear increase. Organized deep convective activity, the longwave cloud radiative feedback, and cirrus ice cloud cover per amount of precipitation also appear to be controlled more strongly by SST than by the deviation of SST from its tropical mean. This study hints at the importance of non-thermodynamic factors such as vertical wind shear for impacting tropical convective structure, cloud properties, and associated radiative energy budget of the tropics. Significance StatementThis study uses tropical satellite observations to demonstrate that vertical wind shear affects the relationship between sea surface temperature and tropical organized deep convection and precipitation. Shear also affects associated cloud properties and how clouds affect the flow of radiation in the atmosphere. Although how vertical wind shear affects convective organization has long been studied in the mesoscale community, the study attempts to apply mesoscale theory to explain the large-scale mean organization of tropical deep convection, cloud properties, and radiative feedbacks. The study also provides a quantitative observational baseline of how vertical wind shear modifies cloud radiative effects and convective organization, which can be compared to numerical simulations. 
    more » « less
  2. Convective parameterization is the long-lasting bottleneck of global climate modelling and one of the most difficult problems in atmospheric sciences. Uncertainty in convective parameterization is the leading cause of the widespread climate sensitivity in IPCC global warming projections. This paper reviews the observations and parameterizations of atmospheric convection with emphasis on the cloud structure, bulk effects, and closure assumption. The representative state-of-the-art convection schemes are presented, including the ECMWF convection scheme, the Grell scheme used in NCEP model and WRF model, the Zhang-MacFarlane scheme used in NCAR and DOE models, and parameterizations of shallow moist convection. The observed convection has self-suppression mechanisms caused by entrainment in convective updrafts, surface cold pool generated by unsaturated convective downdrafts, and warm and dry lower troposphere created by mesoscale downdrafts. The post-convection environment is often characterized by “diamond sounding” suggesting an over-stabilization rather than barely returning to neutral state. Then the pre-convection environment is characterized by slow moistening of lower troposphere triggered by surface moisture convergence and other mechanisms. The over-stabilization and slow moistening make the convection events episodic and decouple the middle/upper troposphere from the boundary layer, making the state-type quasi-equilibrium hypothesis invalid. Right now, unsaturated convective downdrafts and especially mesoscale downdrafts are missing in most convection schemes, while some schemes are using undiluted convective updrafts, all of which favour easily turned-on convection linked to double-ITCZ (inter-tropical convergence zone), overly weak MJO (Madden-Julian Oscillation) and precocious diurnal precipitation maximum. We propose a new strategy for convection scheme development using reanalysis-driven model experiments such as the assimilation runs in weather prediction centres and the decadal prediction runs in climate modelling centres, aided by satellite simulators evaluating key characteristics such as the lifecycle of convective cloud-top distribution and stratiform precipitation fraction. 
    more » « less
  3. El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengthening of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO. 
    more » « less
  4. El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengthening of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO. 
    more » « less
  5. Abstract We present preliminary results from the field program Organization of Tropical East Pacific Convection (OTREC), with measurements during August and September of 2019 using the NSF/NCAR Gulfstream V over the tropical East Pacific and Southwest Caribbean. We found that active convection in this region has predominantly bottom‐heavy vertical mass fluxes, while decaying systems exhibit top‐heavy fluxes characteristic of stratiform rain regions. As in other regions that have been studied, a strong anti‐correlation exists between the low to mid‐level moist convective instability and the column relative humidity or saturation fraction. Finally, the characteristics of convection as a function of latitude differ greatly between the Southwest Caribbean and Colombian Pacific coast on one hand, and the intertropical convergence zone to the west. In particular, the strongest convection in the former is to the south, while it is to the north in the latter, in spite of similar latitudinal sea surface temperature distributions. 
    more » « less