skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated resolution independent method for comparing in vivo and dry trabecular bone
Abstract ObjectivesVariation in human trabecular bone morphology can be linked to habitual behavior, but it is difficult to investigate in vivo due to the radiation required at high resolution. Consequently, functional interpretations of trabecular morphology remain inferential. Here we introduce a method to link low‐ and high‐resolution CT data from dry and fresh bone, enabling bone functional adaptation to be studied in vivo and results compared to the fossil and archaeological record. Materials and methodsWe examine 51 human dry bone distal tibiae from Nile Valley and UK and two pig tibiae containing soft tissues. We compare low‐resolution peripheral quantitative computed tomography (pQCT) parameters and high‐resolution micro CT (μCT) in homologous single slices at 4% bone length and compare results to our novel Bone Ratio Predictor (BRP) method. ResultsRegression slopes between linear attenuation coefficients of low‐resolution pQCT images and bone area/total area (BA/TA) of high‐resolution μCT scans differ substantially between geographical subsamples, presumably due to diagenesis. BRP accurately predicts BA/TA (R2= .97) and eliminates the geographic clustering. BRP accurately estimates BA/TA in pigs containing soft tissues (R2= 0.98) without requiring knowledge of true density or phantom calibration of the scans. DiscussionBRP allows automated comparison of image data from different image modalities (pQCT, μCT) using different energy settings, in archeological bone and wet specimens. The method enables low‐resolution data generated in vivo to be compared with the fossil and archaeological record. Such experimental approaches would substantially improve behavioral inferences based on trabecular bone microstructure.  more » « less
Award ID(s):
1719140 1719187
PAR ID:
10449572
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Physical Anthropology
Volume:
174
Issue:
4
ISSN:
0002-9483
Format(s):
Medium: X Size: p. 822-831
Size(s):
p. 822-831
Sponsoring Org:
National Science Foundation
More Like this
  1. The regionalized vertebral column is a hallmark of mammalian morphology and reflects functional differentiation of the vertebral regions. Mammalian vertebrae are serially homologous and morphologically patterened by Hox expression, but also vary in number and gross morphology across species. The trabecular bone inside vertebral centra is more plastic than gross vertebral bone, and structurally adapts to better withstand forces it experiences during life. However, the functional regionalization of vertebral trabecular bone is poorly examined. Are there trabecular "regions” reflecting the differing functions and in-vivo stress patterns of gross morphological vertebral regions? Or is trabecular morphology homogeneous throughout the spine, suggesting that differences in functional demands are borne exclusively by external characteristics? To address these questions, we collected μCT scans and linear measurements of cervical, thoracic, and lumbar vertebrae in four species of large shrews, including two species of the hero shrew Scutisorex, which has a highly modified vertebral column. We compared linear measurements and trabecular bone characteristics of the cranial and caudal ends of each centrum across species. To detect unique vertebral regions, we executed principal coordinates analysis and segmented regression on three versions of our data set: trabecular bone data only, external measurements only, and the two combined. We found that some regionalization is recovered using only trabecular bone data, but trabecular bone regions do not correspond exactly to gross vertebral regions. This reflects divergence between the functional signals of internal and external vertebral bone morphology, which should be further examined in a kinematic context. 
    more » « less
  2. Abstract ObjectivesVariation in trabecular and cortical bone properties is often used to infer habitual behavior in the past. However, the structures of both types of bone are rarely considered together and may even contradict each other in functional interpretations. We examine trabecular and cortical bone properties in various athletes and sedentary controls to clarify the associations between combinations of cortical and trabecular bone properties and various loading modalities. Materials and methodsWe compare trabecular and cortical bone properties using peripheral quantitative computed tomography scans of the tibia between groups of 83 male athletes (running, hockey, swimming, cricket) and sedentary controls using Bayesian multilevel models. We quantify midshaft cortical bone rigidity and area (J, CA), midshaft shape index (Imax/Imin), and mean trabecular bone mineral density (BMD) in the distal tibia. ResultsAll groups show unique combinations of biomechanical properties. Cortical bone rigidity is high in sports that involve impact loading (cricket, running, hockey) and low in nonimpact loaded swimmers and controls. Runners have more anteroposteriorly elliptical midshafts compared to other groups. Interestingly, all athletes have greater trabecular BMD compared to controls, but do not differ credibly among each other. DiscussionResults suggest that cortical midshaft hypertrophy is associated with impact loading while trabecular BMD is positively associated with both impact and nonimpact loading. Midshaft shape is associated with directionality of loading. Individuals from the different categories overlap substantially, but group means differ credibly, suggesting that nuanced group‐level inferences of habitual behavior are possible when combinations of trabecular and cortical bone are analyzed. 
    more » « less
  3. Abstract Understanding the functional significance of morphological variation is crucial for investigating locomotor adaptations in fossil primates and early hominins. However, the nuanced form–function relationship in the upper limbs of extant apes is difficult to discern due to their varied locomotor behaviors, complicating the interpretation of similar features in fossil hominins. Trabecular bone, which responds to mechanical strain, reflects the intensity and direction of forces during movement, making it valuable for identifying locomotor adaptations in hominoids. This study examines trabecular bone in the clavicle—a crucial component of shoulder biomechanics—to explore its relationship to mechanical loading patterns and bone functional adaptations in primate locomotion. Using a whole‐bone approach, we analyzed trabecular structure in the clavicle of apes:Gorillaspp. (G. beringei:N = 28;G. gorilla:N = 29),Homo sapiens(N = 19),Hylobatesspp. (H. lar:N = 28;H. concolor:N = 3),Pongospp. (P. abelii:N = 13;P. pygmaeus:N = 24), andPan troglodytes(N = 35), quantifying relative bone volume fraction (rBV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N) from high‐resolution micro‐CT scans. Aspects of the clavicular trabecular architecture among ape taxa appear to correspond to differences in locomotor behavior. In most taxa, rBV/TV is highest in regions underlying muscle attachment sites frequently used during upper limb activities, with differences among taxa predominantly reflecting variations in upper limb use and muscle attachment sites. Regions of high rBV/TV beneath entheses and articular surfaces result from different trabecular parameters—higher rBV/TV is achieved primarily via greater Tb.Th under entheses, while in subarticular regions, it is driven by higher Tb.N. However, no consistent differences in sternoclavicular subarticular trabecular bone emerge betweenHomoand the other apes, despite differences in shoulder positioning on the torso. Muscle activity appears to significantly influence trabecular bone structure in the clavicle of living apes, with implications for reconstructing early hominin locomotor behaviors and upper limb use. 
    more » « less
  4. In image-based finite element analysis of bone, partial volume effects (PVEs) arise from image blur at tissue boundaries and as a byproduct of geometric reconstruction and meshing during model creation. In this study, we developed and validated a material assignment approach to mitigate partial volume effects. Our validation data consisted of physical torsion testing of intact tibiae from N = 20 Swiss alpine sheep. We created finite element models from micro-CT scans of these tibiae using three popular element types (10-node tetrahedral, 8-node hexahedral, and 20-node hexahedral). Without partial volume management, the models over-predicted the torsional rigidity compared to physical biomechanical tests. To address this problem, we implemented a dual-zone material model to treat elements that overlap low-density surface voxels as soft tissue rather than bone. After in situ inverse optimization, the dual-zone material model produced strong correlations and high absolute agreement between the virtual and physical tests. This suggests that with appropriate partial volume management, virtual mechanical testing can be a reliable surrogate for physical biomechanical testing. For maximum flexibility in partial volume management regardless of element type, we recommend the use of the following dual-zone material model for ovine tibiae: soft-tissue cutoff density of 665 mgHA/cm3 with a soft tissue modulus of 50 MPa (below cutoff) and a density-modulus conversion slope of 10,225 MPa-cm3/mgHA for bone (above cutoff). 
    more » « less
  5. Abstract ObjectivesThe objective of this study is to demonstrate a new method for analyzing trabecular bone volume fraction and degree of anisotropy in three dimensions. MethodsWe use a combination of automatic mesh registration, point‐cloud correspondence registration, andP‐value corrected univariate statistical tests to compare bone volume fraction and degree of anisotropy on a point by point basis across the entire calcaneus of two human groups with different subsistence strategies. ResultsWe found that the patterns of high and low bone volume fraction and degree of anisotropy distribution between the Black Earth (hunter‐gatherers) and Norris Farms (mixed‐strategy agriculturalists) are very similar, but differ in magnitude. The hunter‐gatherers exhibit higher levels of bone volume fraction and less anisotropic trabecular bone organization. Additionally, patterns of bone volume fraction and degree of anisotropy in the calcaneus correspond well with biomechanical expectations of relative forces experienced during walking and running. ConclusionsWe conclude that comparing site‐specific, localized differences in trabecular bone variables such as bone volume fraction and degree of anisotropy in three‐dimensions is a powerful analytical tool. This method makes it possible to determine where similarities and differences between groups are located within the whole skeletal element of interest. The visualization of multiple variables also provides a way for researchers to see how the trabecular bone variables interact within the morphology, and allows for a more nuanced understanding of how they relate to one another and the broader mechanical environment. 
    more » « less