skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Materials and Schemes of Multimodal Reconfigurable Micro/Nanomachines and Robots: Review and Perspective
Abstract Mechanically programmable, reconfigurable micro/nanoscale materials that can dynamically change their mechanical properties or behaviors, or morph into distinct assemblies or swarms in response to stimuli have greatly piqued the interest of the science community due to their unprecedented potentials in both fundamental research and technological applications. To date, a variety of designs of hard and soft materials, as well as actuation schemes based on mechanisms including chemical reactions and magnetic, acoustic, optical, and electric stimuli, have been reported. Herein, state‐of‐the‐art micro/nanostructures and operation schemes for multimodal reconfigurable micro/nanomachines and swarms, as well as potential new materials and working principles, challenges, and future perspectives are discussed.  more » « less
Award ID(s):
1930649 1710922
PAR ID:
10449644
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
39
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic liquid metal (MLM) is a mixture of magnetic particles with gallium‐based liquid metals which utilizes an unconventional combination of fluidity, high thermal/electrical conductivity, biocompatibility, and magnetism. Recently, from materials to applications, studies on MLMs have drastically increased. Single or multiple MLMs can be precisely positioned or can act as a carrier for handling other objects. MLMs are also used in biomedical applications such as cancer treatment by hyperthermia and precision delivery of cancer drugs on tumors, or antibacterial coating which kills bacteria. In electronics applications, MLMs are used for magnetic field‐driven patterning of metallic lines, reconfigurable interconnects, electronic tattoos, and reconfigurable electromagnetic wave shielding. Phase change (solid/liquid) of MLMs adds another unique capability, morphing. A combination of innovations in the micro/nano robots and MLMs has huge potential to bring an unprecedented disruptive technology for a wide variety of applications including self‐morphing shape‐recovery robots, highly localized cancer treatment, and reconfigurable stealth/camouflage, among others. This article comprehensively reviews recent developments in MLMs from the materials to methods of preparation, locomotion of MLMs, their applications, and future outlooks. 
    more » « less
  2. Abstract Linear defect‐disclinations are of fundamental interest in understanding complex structures explored by soft matter physics, elementary particles physics, cosmology, and various branches of mathematics. These defects are also of practical importance in materials applications, such as programmable origami, directed colloidal assembly, and command of active matter. Here an effective engineering approach is demonstrated to pattern molecular orientations at two flat confining surfaces that produce complex yet designable networks of singular disclinations of strength 1/2. Depending on the predesigned director patterns at the bounding plates, the produced disclinations are either surface‐anchored, connecting desired sites at the boundaries, or freely suspended in bulk, forming ordered arrays of polygons and wavy lines. The capability is shown to control the radius of curvature, size, and shape of disclinations by varying uniform alignment orientation on one of these confining plates. The capabilities to precisely design and create highly complex 3D disclination networks promise intriguing applications in stimuli‐responsive reconfigurable materials, directed self‐assembly of molecules, micro‐ and nanoparticles, and transport and sorting in microfluidic applications. 
    more » « less
  3. Abstract Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free‐moving, entirely soft‐bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape‐morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real‐world applications for intricate and challenging tasks. 
    more » « less
  4. Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide‐based phase‐change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid‐state structural phases. Although significant efforts have been devoted to accurate simulation of PCM‐based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid‐phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above‐mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM‐based photonic devices and can inform the development of more efficient reconfigurable optics. 
    more » « less
  5. Abstract Manipulation of magnetic materials (including remote‐controlled motions or structural deformations) plays a major role in modern micro‐ to macro‐scale systems. Magnetic operations create highly predicable outcomes in the behavior of systems, however these have difficulty performing subordinate and/or higher‐order operations. This lack of selectivity remains a critical drawback of magnetic manipulation schemes. Here, a strategy of engineering highly selective magnetic responses is studied and implemented. This is achieved by combining magnetic barcodes (“keys” encoded with layers of magnetic anisotropy) with programmable magnetic platforms (locking select codes in place with matching spatiotemporal magnetic fields). Presently, barcodes are realized by encoding hydrogel with sequences of magnetic microchains with binary spatial orientations. A number of unique capabilities of this approach are studied, including the untethered, selective anchoring of magnetic barcodes to programmable sites, as well as the selective latching of barcodes against background magnetic tags during flow. This approach may be used as a building block in micro‐ to macro‐scale magnetic interfaces. 
    more » « less