Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Microbubbles are an important tool due to their unique mechanical, acoustic, and dynamical properties. Yet, it remains challenging to generate microbubbles quickly in a parallel, biocompatible, and controlled manner. Here, we present an opto-electrochemical method that combines precise light-based projection with low-energy electrolysis, realizing defined microbubble patterns that in turn trigger assembly processes. The size of the bubbles can be controlled from a few to over hundred micrometers with a spatial accuracy of ~2 μm. The minimum required light intensity is only ~0.1 W/cm2, several orders of magnitude lower compared to other light-enabled methods. We demonstrate the assembly of prescribed patterns of 40-nm nanocrystals, 200 nm extracellular vesicles, polymer nanospheres, and live bacteria. We show how nanosensor-bacterial-cell arrays can be formed for spectroscopic profiling of metabolites and antibiotic response of bacterial assemblies. The combination of a photoconductor with electrochemical techniques enables low-energy, low-temperature bubble generation, advantageous for large-scale, one-shot patterning of diverse particles in a biocompatible manner. The microbubble-platform is highly versatile and promises new opportunities in nanorobotics, nanomanufacturing, high-throughput bioassays, single cell omics, bioseparation, and drug screening and discovery.more » « less
-
Abstract Bulk transition metal dichalcogenide (TMDC) nanostructures are regarded as promising material candidates for integrated photonics due to their high refractive index at the near‐infrared wavelengths. In this work, colloidal TMDC waveguides with tailorable dimensions are prepared by a scalable synthetic approach. The optical waveguiding properties of colloidal nanowires are studied by the near‐field nanoimaging technique. In addition to dependence on thickness and wavelength, the excitonic responses and resultant waveguide modes in TMDC nanowires can be modulated by the environmental temperature. With the high‐throughput production and tunable optical properties, colloidal TMDC nanowires highlight the potential for active optical components and integrated photonic devices.more » « less
-
Abstract Subwavelength optical resonators with spatiotemporal control of light are essential to the miniaturization of optical devices. In this work, chemically synthesized transition metal dichalcogenide (TMDC) nanowires are exploited as a new type of dielectric nanoresonators to simultaneously support pronounced excitonic and Mie resonances. Strong light–matter couplings and tunable exciton polaritons in individual nanowires are demonstrated. In addition, the excitonic responses can be reversibly modulated with excellent reproducibility, offering the potential for developing tunable optical nanodevices. Being in the mobile colloidal state with highly tunable optical properties, the TMDC nanoresonators will find promising applications in integrated active optical devices, including all‐optical switches and sensors.more » « less
-
Abstract 2D transition‐metal‐dichalcogenide materials, such as molybdenum disulfide (MoS2) have received immense interest owing to their remarkable structure‐endowed electronic, catalytic, and mechanical properties for applications in optoelectronics, energy storage, and wearable devices. However, 2D materials have been rarely explored in the field of micro/nanomachines, motors, and robots. Here, MoS2 with anatase TiO2 is successfully integrated into an original one‐side‐open hollow micromachine, which demonstrates increased light absorption of TiO2‐based micromachines to the visible region and the first observed motion acceleration in response to ionic media. Both experimentation and theoretical analysis suggest the unique type‐II bandgap alignment of MoS2/TiO2 heterojunction that accounts for the observed unique locomotion owing to a competing propulsion mechanism. Furthermore, by leveraging the chemical properties of MoS2/TiO2, the micromachines achieve sunlight‐powered water disinfection with 99.999% Escherichia coli lysed in an hour. This research suggests abundant opportunities offered by 2D materials in the creation of a new class of micro/nanomachines and robots.more » « less
-
Abstract Mechanically programmable, reconfigurable micro/nanoscale materials that can dynamically change their mechanical properties or behaviors, or morph into distinct assemblies or swarms in response to stimuli have greatly piqued the interest of the science community due to their unprecedented potentials in both fundamental research and technological applications. To date, a variety of designs of hard and soft materials, as well as actuation schemes based on mechanisms including chemical reactions and magnetic, acoustic, optical, and electric stimuli, have been reported. Herein, state‐of‐the‐art micro/nanostructures and operation schemes for multimodal reconfigurable micro/nanomachines and swarms, as well as potential new materials and working principles, challenges, and future perspectives are discussed.more » « less
-
Abstract To develop active nanomaterials that can instantly respond to external stimuli with designed mechanical motions is an important step towards the realization of nanorobots. Herein, we present our finding of a versatile working mechanism that allows instantaneous change of alignment direction and speed of semiconductor nanowires in an external electric field with simple visible-light exposure. The light induced alignment switch can be cycled over hundreds of times and programmed to express words in Morse code. With theoretical analysis and simulation, the working principle can be attributed to the optically tuned real-part (in-phase) electrical polarization of a semiconductor nanowire in aqueous suspension. The manipulation principle is exploited to create a new type of microscale stepper motor that can readily switch between in-phase and out-phase modes, and agilely operate independent of neighboring motors with patterned light. This work could inspire the development of new types of micro/nanomachines with individual and reconfigurable maneuverability for many applications.more » « less
-
Abstract Molybdenum disulfide (MoS2) is a multifunctional material that can be used for various applications. In the single‐crystalline form, MoS2shows superior electronic properties. It is also an exceptionally useful nanomaterial in its polycrystalline form with applications in catalysis, energy storage, water treatment, and gas sensing. Here, the scalable fabrication of longitudinal MoS2nanostructures, i.e., nanoribbons, and their oxide hybrids with tunable dimensions in a rational and well‐reproducible fashion, is reported. The nanoribbons, obtained at different reaction stages, that is, MoO3, MoS2/MoO2hybrid, and MoS2, are fully characterized. The growth method presented herein has a high yield and is particularly robust. The MoS2nanoribbons can readily be removed from its substrate and dispersed in solution. It is shown that functionalized MoS2nanoribbons can be manipulated in solution and assembled in controlled patterns and directly on microelectrodes with UV‐click‐chemistry. Owing to the high chemical purity and polycrystalline nature, the MoS2nanostructures demonstrate rapid optoelectronic response to wavelengths from 450 to 750 nm, and successfully remove mercury contaminants from water. The scalable fabrication and manipulation followed by light‐directed assembly of MoS2nanoribbons, and their unique properties, will be inspiring for device fabrication and applications of the transition metal dichalcogenides.more » « less
-
Free, publicly-accessible full text available August 1, 2026
-
The rapid advancement of nanotweezers for wireless manipulation of artificial micro‐ and nanoparticles has unlocked unprecedented possibilities in biomedicine. This review delves into optical, electric, and magnetic tweezers, emphasizing their roles in controlling single particles with micro/nanoscale features as miniaturized tools. Instead of providing a comprehensive review, this work highlights a select number of representative historical and contemporary examples of each type of tweezer, covering their rudimental working mechanisms, experimental setups, performance characteristics, and niche biomedical applications. Particularly, the focus lies in providing a quantitative comparison of the performances in spatial precision and degrees of freedom in controlling single particles, along with associated challenges and prospects.more » « less
An official website of the United States government
