As part of ongoing efforts to isolate biologically active fungal metabolites, a cyclic pentapeptide, sheptide A (
Previously compound
- PAR ID:
- 10449679
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Biomedical Chromatography
- Volume:
- 35
- Issue:
- 10
- ISSN:
- 0269-3879
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 1 ), was discovered from strain MSX53339 (Herpotrichiellaceae ). The structure and sequence of1 were determined primarily by analysis of 2D NMR and HRMS/MS data, while the absolute configuration was assigned using a modified version of Marfey’s method. In an in vitro assay for antimalarial potency,1 displayed a pEC50value of 5.75 ± 0.49 against malaria-causingPlasmodium falciparum . Compound1 was also tested in a counter screen for general cytotoxicity against human hepatocellular carcinoma (HepG2), yielding a pCC50value of 5.01 ± 0.45 and indicating a selectivity factor of ~6. This makes1 the third known cyclic pentapeptide biosynthesized by fungi with antimalarial activity. -
Abstract Nalbuphine was a semisynthetic opioid analgesic widely used in the treatment of both acute and chronic pain. We developed and validated a rapid, simple and sensitive method by ultra-performance liquid chromatography–tandem mass spectrometry (MS/MS) for the simultaneous quantitation of nalbuphine in human plasma, and we reported the pharmacokinetic features of patients during general anesthesia for abdominal surgery. Sample separation was achieved on a Kinetex Phenyl-Hexyl column (50 × 2.1 mm, 1.7 μm) after simple protein precipitation with acetonitrile. The mobile phase was composed of acetonitrile and 3 mM of ammonium acetate aqueous solution with 0.1% formic acid. Gradient elution was used in 4.5 min with a flow rate of 0.5 mL/min at 40°C. MS detection using AB Sciex QTRAP 5500 mass spectrometer was characterized by electrospray ionization for positive ions in multiple reaction monitoring mode. Quantitative ion pairs were m/z 358.4 → 340.1 for nalbuphine and m/z 340.0 → 268.3 for nalmefene, which were used as the internal standard (IS). The calibration curves showed good linearity (r2>0.99) over concentration range of 0.1–500 ng/mL. The intra-and inter-batch precisions were within 10.67%, and accuracy ranged from 94.07 to 105.34%. The IS–normalized matrix factors were 1.02–1.03 with RSD% (≤5.82%). The recoveries ranged from 101.09 to 106.30%. In conclusion, a rapid, simple, sensitive and economical analytical method was developed and validated to detect the concentration in plasma samples obtained from patients receiving nalbuphine intravenous injection and was successfully applicated to human pharmacokinetic studies of nalbuphine.
-
Antonio R. Montoro Bustos (Ed.)The short- and long-term impacts of nanoparticles (NPs) in consumer products are not fully understood. Current European Union (EU) regulations enforce transparency on products containing NPs in cosmetic formulations; however, those set by the U.S. Food and Drug Administration are lacking. This study demonstrates the potential of single-particle inductively coupled plasma tandem mass spectrometry (spICP-MS/MS) as a screening method for NPs present in powder-based facial cosmetics (herein referred to as FCs). A proposed spICP-MS/MS method is presented along with recommended criteria to confirm particle presence and particle detection thresholds in seven FCs. FC products of varying colors, market values, and applications were analyzed for the presence of Bi, Cr, Mg, Mn, Pb, Sn, Ag, Al, and Zn NPs based on their ingredient lists as well as those commonly used in cosmetic formulations. The presence of NPs smaller than 100 nm was observed in all FC samples, and no correlations with their presence and market value were observed. Here, we report qualitative and semi-quantitative results for seven FC samples ranging in color, brand, and shimmer.more » « less
-
Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) imaging and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) are complementary methods that measure distributions of elements and biomolecules in tissue sections. Quantitative correlations of the information provided by these two imaging modalities requires that the datasets be registered in the same coordinate system, allowing for pixel-by-pixel comparisons. We describe here a computational workflow written in Python that accomplishes this registration, even for adjacent tissue sections, with accuracies within ±50 μm. The value of this registration process is demonstrated by correlating images of tissue sections from mice injected with gold nanomaterial drug delivery systems. Quantitative correlations of the nanomaterial delivery vehicle, as detected by LA-ICP-MS imaging, with biochemical changes, as detected by MALDI-MSI, provide deeper insight into how nanomaterial delivery systems influence lipid biochemistry in tissues. Moreover, the registration process allows the more precise images associated with LA-ICP-MS imaging to be leveraged to achieve improved segmentation in MALDI-MS images, resulting in the identification of lipids that are most associated with different sub-organ regions in tissues.more » « less
-
Abstract The DNA hypomethylating agents decitabine and 5-azacytidine are the only two drugs approved for treatment of all subtypes of the myeloid malignancy myelodysplastic syndromes (MDS). The key to drug activity is incorporation into target cell DNA, however, a practical method to measure this incorporation is un-available. Here, we report a sensitive and specific LC-MS/MS method to simultaneously measure decitabine incorporation and DNA hypomethylation. A stable heavy isotope of 2′-deoxycytidine was used as an internal standard and one-step multi-enzyme digestion was used to release the DNA bound drug. Enzyme-released decitabine along with other mononucleosides were separated by a reverse-phase C18column and quantified by mass spectrometry using multiple-reaction-monitoring (MRM) mode, with a lower limit of quantitation at 1.00 nM.
In vitro studies demonstrated dosage and time-dependent incorporation of decitabine into myeloid leukemia cell DNA that correlated with extent of DNA hypomethylation. When applied to clinical samples serially collected from MDS patients treated with decitabine, the method again demonstrated correlation between decitabine DNA-incorporation and DNA hypomethylation. This novel assay to measure the intended molecular pharmacodynamic effect of decitabine therapy can therefore potentially provide insights into mechanisms underlying sensitivity versus resistance to therapy.