skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Major surface melting over the Ross Ice Shelf part II : Surface energy balance
Abstract The West Antarctic climate is under the combined impact of synoptic and regional drivers. Regional factors have contributed to more frequent surface melting with a similar pattern recently, which accelerates ice loss and favors global sea‐level rise. Part I of this research identified and quantified the two leading drivers of Ross Ice Shelf (RIS) melting, viz. foehn effect and direct marine air advection, based on Polar WRF (PWRF) simulations. In this article (Part II), the impact of clouds and the pattern of surface energy balance (SEB) during melting are analyzed, as well as the relationship among these three factors. In general, net shortwave radiation dominates the surface melting with a daily mean value above 100 W·m−2. Foehn clearance and decreasing surface albedo respectively increase the downward shortwave radiation and increase the absorbed shortwave radiation, significantly contributing to surface melting in areas such as western Marie Byrd Land. Also, extensive downward longwave radiation caused by low‐level liquid cloud favors the melting expansion over the middle and coastal RIS. With significant moisture transport occurring over more than 40% of the time during the melting period, the impact from net radiation can be amplified. Moreover, frequent foehn cases can enhance the turbulent mixing on the leeside. With a Froude number (Fr) around 1 or slightly larger, fast downdrafts or reversed wind flows can let the warm foehn air penetrate down to the surface with up to 20 W·m−2in sensible heat flux transfer to the ground. However, when the Froude number is close to infinity with breaking waves on the leeside, the contribution of turbulence to the surface warming is reduced. With better understanding of the regional factors for the surface melting, prediction of the future stability of West Antarctic ice shelves can be improved.  more » « less
Award ID(s):
1823135
PAR ID:
10449681
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
147
Issue:
738
ISSN:
0035-9009
Page Range / eLocation ID:
p. 2895-2916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Antarctica Peninsula (AP) has experienced more frequent and intense surface melting recently, jeopardizing the stability of ice shelves and ultimately leading to ice loss. Among the key phenomena that can initiate surface melting are atmospheric rivers (ARs) and leeside foehn; the combined impact of ARs and foehn led to moderate surface warming over the AP in December 2018 and record‐breaking surface melting in February 2022. Focusing on the more intense 2022 case, this study uses high‐resolution Polar WRF simulations with advanced model configurations, Reference Elevation Model of Antarctica topography, and observed surface albedo to better understand the relationship between ARs and foehn and their impacts on surface warming. With an intense AR (AR3) intrusion during the 2022 event, weak low‐level blocking and heavy orographic precipitation on the upwind side resulted in latent heat release, which led to a more deep‐foehn like case. On the leeside, sensible heat flux associated with the foehn magnitude was the major driver during the night and the secondary contributor during the day due to a stationary orographic gravity wave. Downward shortwave radiation was enhanced via cloud clearance and dominated surface melting during the daytime, especially after the peak of the AR/foehn events. However, due to the complex terrain of the AP, ARs can complicate the foehn event by transporting extra moisture to the leeside via gap flows. During the peak of the 2022 foehn warming, cloud formation on the leeside hampered the downward shortwave radiation and slightly increased the downward longwave radiation. 
    more » « less
  2. Abstract West Antarctica (WA), especially the Ross Ice Shelf (RIS), has experienced more frequent surface melting during the austral summer recently. The future is likely to see enhanced surface melting that will jeopardize the stability of ice shelves and cause ice loss. We investigate four major melt cases over the RIS via Polar Weather Research and Forecasting (WRF) simulations (4 km resolution) driven by European Centre for Medium‐Range Weather Forecasts (ECMWF) Reanalysis 5th Generation (ERA5) reanalysis data and Moderate Resolution Imaging Spectroradiometer (MODIS) observed albedo. Direct warm air advection, recurring foehn effect, and cloud/upper warm air introduced radiative warming are the three major regional causes of surface melting over WA. In this paper, Part I, the first two factors are identified and quantified. The second paper, Part II, discusses the impact of clouds and summarizes all three factors from a surface energy balance perspective. With a high‐pressure ridge located westward towards the Sulzberger Ice Shelf (77° S, 148° W) and a low‐pressure center located between 165° and 180° W, warm marine air from the Ross Sea is advected towards the coastal RIS and leads to surface melting. When the high‐pressure ridge is located farther east towards Marie Byrd Land (120–150° W), the foehn effect can cause a 2–4°C increase in surface temperature on the leeside of the mountains. For three of four melt cases, more than 40% of the melting period experiences foehn warming. Isentropic drawdown is usually the dominant foehn mechanism and contributes up to a 14°C temperature increase, especially when strong low‐level blocking occurs on the upwind side. The thermodynamic mechanism can be important depending on the strength of moisture uptake and condensation on the windward side. Meanwhile, sensible heat flux contributes less to foehn warming, but still plays an important role in the melting. The prediction of future stability of the RIS should include foehn warming as a major driver. 
    more » « less
  3. Abstract Forecasting Antarctic atmospheric, oceanic, and sea ice conditions on subseasonal to seasonal scales remains a major challenge. During both the freezing and melting seasons current operational ensemble forecasting systems show a systematic overestimation of the Antarctic sea-ice edge location. The skill of sea ice cover prediction is closely related to the accuracy of cloud representation in models, as the two are strongly coupled by cloud radiative forcing. In particular, surface downward longwave radiation (DLW) deficits appear to be a common shortcoming in atmospheric models over the Southern Ocean. For example, a recent comparison of ECMWF reanalysis 5th generation (ERA5) global reanalysis with the observations from McMurdo Station revealed a year-round deficit in DLW of approximately 50 Wm−2in marine air masses due to model shortages in supercooled cloud liquid water. A comparison with the surface DLW radiation observations from the Ocean Observatories Initiative mooring in the South Pacific at 54.08° S, 89.67° W, for the time period January 2016–November 2018, confirms approximately 20 Wm−2deficit in DLW in ERA5 well north of the sea-ice edge. Using a regional ocean model, we show that when DLW is artificially increased by 50 Wm−2in the simulation driven by ERA5 atmospheric forcing, the predicted sea ice growth agrees much better with the observations. A wide variety of sensitivity tests show that the anomalously large, predicted sea-ice extent is not due to limitations in the ocean model and that by implication the cause resides with the atmospheric forcing. 
    more » « less
  4. Accurate multidecadal radiative flux records are vital to understand Arctic amplification and constrain climate model uncertainties. Uncertainty in the NASA Clouds and the Earth’s Radiant Energy System (CERES)-derived irradiances is larger over sea ice than any other surface type and comes from several sources. The year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic provides a rare opportunity to explore uncertainty in CERES-derived radiative fluxes. First, a systematic and statistically robust assessment of surface shortwave and longwave fluxes was conducted using in situ measurements from MOSAiC flux stations. The CERES Synoptic 1degree (SYN1deg) product overestimates the downwelling shortwave flux by +11.40 Wm–2 and underestimates the upwelling shortwave flux by –15.70 Wm–2 and downwelling longwave fluxes by –12.58 Wm–2 at the surface during summer. In addition, large differences are found in the upwelling longwave flux when the surface approaches the melting point (approximately 0°C). The biases in downwelling shortwave and longwave fluxes suggest that the atmosphere represented in CERES is too optically thin. The large negative bias in upwelling shortwave flux can be attributed in large part to lower surface albedo (–0.15) in satellite footprint relative to surface sensors. Additionally, the results show that the spectral surface albedo used in SYN1deg overestimates albedo in visible and mid-infrared bands. A series of radiative transfer model perturbation experiments are performed to quantify the factors contributing to the differences. The CERES-MOSAiC broadband albedo differences (approximately 20 Wm–2) explain a larger portion of the upwelling shortwave flux difference than the spectral albedo shape differences (approximately 3 Wm–2). In addition, the differences between perturbation experiments using hourly and monthly MOSAiC surface albedo suggest that approximately 25% of the sea ice surface albedo variability is explained by factors not correlated with daily sea ice concentration variability. Biases in net shortwave and longwave flux can be reduced to less than half by adjusting both albedo and cloud inputs toward observed values. The results indicate that improvements in the surface albedo and cloud data would substantially reduce the uncertainty in the Arctic surface radiation budget derived from CERES data products. 
    more » « less
  5. Abstract We calculate a regional surface “melt potential” index (MPI) over Antarctic ice shelves that describes the frequency (MPI-freq; %) and intensity (MPI-int; K) of daily maximum summer temperatures exceeding a melt threshold of 273.15 K. This is used to determine which ice shelves are vulnerable to melt-induced hydrofracture and is calculated using near-surface temperature output for each summer from 1979/80 to 2018/19 from two high-resolution regional atmospheric model hindcasts (using the MetUM and HIRHAM5). MPI is highest for Antarctic Peninsula ice shelves (MPI-freq 23%–35%, MPI-int 1.2–2.1 K), lowest (2%–3%, <0 K) for the Ronne–Filchner and Ross ice shelves, and around 10%–24% and 0.6–1.7 K for the other West and East Antarctic ice shelves. Hotspots of MPI are apparent over many ice shelves, and they also show a decreasing trend in MPI-freq. The regional circulation patterns associated with high MPI values over West and East Antarctic ice shelves are remarkably consistent for their respective region but tied to different large-scale climate forcings. The West Antarctic circulation resembles the central Pacific El Niño pattern with a stationary Rossby wave and a strong anticyclone over the high-latitude South Pacific. By contrast, the East Antarctic circulation comprises a zonally symmetric negative Southern Annular Mode pattern with a strong regional anticyclone on the plateau and enhanced coastal easterlies/weakened Southern Ocean westerlies. Values of MPI are 3–4 times larger for a lower temperature/melt threshold of 271.15 K used in a sensitivity test, as melting can occur at temperatures lower than 273.15 K depending on snowpack properties. 
    more » « less