The West Antarctic climate is under the combined impact of synoptic and regional drivers. Regional factors have contributed to more frequent surface melting with a similar pattern recently, which accelerates ice loss and favors global sea‐level rise. Part I of this research identified and quantified the two leading drivers of Ross Ice Shelf (RIS) melting, viz. foehn effect and direct marine air advection, based on Polar WRF (PWRF) simulations. In this article (Part II), the impact of clouds and the pattern of surface energy balance (SEB) during melting are analyzed, as well as the relationship among these three factors. In general, net shortwave radiation dominates the surface melting with a daily mean value above 100 W·m−2. Foehn clearance and decreasing surface albedo respectively increase the downward shortwave radiation and increase the absorbed shortwave radiation, significantly contributing to surface melting in areas such as western Marie Byrd Land. Also, extensive downward longwave radiation caused by low‐level liquid cloud favors the melting expansion over the middle and coastal RIS. With significant moisture transport occurring over more than 40% of the time during the melting period, the impact from net radiation can be amplified. Moreover, frequent foehn cases can enhance the turbulent mixing on the leeside. With a Froude number (Fr) around 1 or slightly larger, fast downdrafts or reversed wind flows can let the warm foehn air penetrate down to the surface with up to 20 W·m−2in sensible heat flux transfer to the ground. However, when the Froude number is close to infinity with breaking waves on the leeside, the contribution of turbulence to the surface warming is reduced. With better understanding of the regional factors for the surface melting, prediction of the future stability of West Antarctic ice shelves can be improved.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract West Antarctica (WA), especially the Ross Ice Shelf (RIS), has experienced more frequent surface melting during the austral summer recently. The future is likely to see enhanced surface melting that will jeopardize the stability of ice shelves and cause ice loss. We investigate four major melt cases over the RIS via Polar Weather Research and Forecasting (WRF) simulations (4 km resolution) driven by European Centre for Medium‐Range Weather Forecasts (ECMWF) Reanalysis 5th Generation (ERA5) reanalysis data and Moderate Resolution Imaging Spectroradiometer (MODIS) observed albedo. Direct warm air advection, recurring foehn effect, and cloud/upper warm air introduced radiative warming are the three major regional causes of surface melting over WA. In this paper, Part I, the first two factors are identified and quantified. The second paper, Part II, discusses the impact of clouds and summarizes all three factors from a surface energy balance perspective. With a high‐pressure ridge located westward towards the Sulzberger Ice Shelf (77° S, 148° W) and a low‐pressure center located between 165° and 180° W, warm marine air from the Ross Sea is advected towards the coastal RIS and leads to surface melting. When the high‐pressure ridge is located farther east towards Marie Byrd Land (120–150° W), the foehn effect can cause a 2–4°C increase in surface temperature on the leeside of the mountains. For three of four melt cases, more than 40% of the melting period experiences foehn warming. Isentropic drawdown is usually the dominant foehn mechanism and contributes up to a 14°C temperature increase, especially when strong low‐level blocking occurs on the upwind side. The thermodynamic mechanism can be important depending on the strength of moisture uptake and condensation on the windward side. Meanwhile, sensible heat flux contributes less to foehn warming, but still plays an important role in the melting. The prediction of future stability of the RIS should include foehn warming as a major driver.
-
null (Ed.)Abstract Two reports of Antarctic Region potential new record high temperature observations (18.3°C, 6 February 2020 at Esperanza station and 20.8°C, 9 February 2020 at a Brazilian automated permafrost monitoring station on Seymour Island) were evaluated by a World Meteorological Organization (WMO) panel of atmospheric scientists. The latter figure was reported as 20.75°C in the media. The panel considered the synoptic situation and instrumental setups. It determined that a large high-pressure system over the area created föhn conditions and resulted in local warming for both situations. Examination of the data and metadata of the Esperanza station observation revealed no major concerns. However, analysis of data and metadata of the Seymour Island permafrost monitoring station indicated that an improvised radiation shield led to a demonstrable thermal bias error for the temperature sensor. Consequently, the WMO has accepted the 18.3° C value for 12 noon (LST) 6 February 2020 [1500 UTC 6 February 2020] at the Argentine Esperanza station as the new “Antarctic Region [continental, including mainland and surrounding islands] highest temperature recorded observation” but rejected the 20.8° C observation at the Brazilian automated Seymour Island permafrost monitoring station as biased. The committee strongly emphasizes the permafrost monitoring station was not badly designed for its purpose, but the project investigators were forced to improvise a non-optimal radiation shield after losing the original covering. Secondly, with regard to media dissemination of this type of information, the committee urges increased caution in early announcements as many media outlets often tend to sensationalize and mischaracterize potential records.more » « less
-
null (Ed.)This study presents near future (2020–2044) temperature and precipitation changes over the Antarctic Peninsula under the high-emission scenario (RCP8.5). We make use of historical and projected simulations from 19 global climate models (GCMs) participating in Coupled Model Intercomparison Project phase 5 (CMIP5). We compare and contrast GCMs projections with two groups of regional climate model simulations (RCMs): (1) high resolution (15-km) simulations performed with Polar-WRF model forced with bias-corrected NCAR-CESM1 (NC-CORR) over the Antarctic Peninsula, (2) medium resolution (50-km) simulations of KNMI-RACMO21P forced with EC-EARTH (EC) obtained from the CORDEX-Antarctica. A further comparison of historical simulations (1981–2005) with respect to ERA5 reanalysis is also included for circulation patterns and near-surface temperature climatology. In general, both RCM boundary conditions represent well the main circulation patterns of the historical period. Nonetheless, there are important differences in projections such as a notable deepening and weakening of the Amundsen Sea Low in EC and NC-CORR, respectively. Mean annual near-surface temperatures are projected to increase by about 0.5–1.5 ◦ C across the entire peninsula. Temperature increase is more substantial in autumn and winter ( ∼ 2 ◦C). Following opposite circulation pattern changes, both EC and NC-CORR exhibit different warming rates, indicating a possible continuation of natural decadal variability. Although generally showing similar temperature changes, RCM projections show less warming and a smaller increase in melt days in the Larsen Ice Shelf compared to their respective driving fields. Regarding precipitation, there is a broad agreement among the simulations, indicating an increase in mean annual precipitation ( ∼ 5 to 10%). However, RCMs show some notable differences over the Larsen Ice Shelf where total precipitation decreases (for RACMO) and shows a small increase in rain frequency. We conclude that it seems still difficult to get consistent projections from GCMs for the Antarctic Peninsula as depicted in both RCM boundary conditions. In addition, dominant and common changes from the boundary conditions are largely evident in the RCM simulations. We argue that added value of RCM projections is driven by processes shaped by finer local details and different physics schemes that are introduced by RCMs, particularly over the Larsen Ice Shelf.more » « less
-
null (Ed.)The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) had a Special Observing Period (SOP) that ran from November 16, 2018 to February 15, 2019, a period chosen to span the austral warm season months of greatest operational activity in the Antarctic. Some 2200 additional radiosondes were launched during the 3-month SOP, roughly doubling the routine program, and the network of drifting buoys in the Southern Ocean was enhanced. An evaluation of global model forecasts during the SOP and using its data has confirmed that extratropical Southern Hemisphere forecast skill lags behind that in the Northern Hemisphere with the contrast being greatest between the southern and northern polar regions. Reflecting the application of the SOP data, early results from observing system experiments show that the additional radiosondes yield the greatest forecast improvement for deep cyclones near the Antarctic coast. The SOP data have been applied to provide insights on an atmospheric river event during the YOPP-SH SOP that presented a challenging forecast and that impacted southern South America and the Antarctic Peninsula. YOPP-SH data have also been applied in determinations that seasonal predictions by coupled atmosphere-ocean-sea ice models struggle to capture the spatial and temporal characteristics of the Antarctic sea ice minimum. Education, outreach, and communication activities have supported the YOPP-SH SOP efforts. Based on the success of this Antarctic summer YOPP-SH SOP, a winter YOPP-SH SOP is being organized to support explorations of Antarctic atmospheric predictability in the austral cold season when the southern sea-ice cover is rapidly expanding.more » « less