skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D Cationic Polymeric Network Nanotrap for Efficient Collection of Perrhenate Anion from Wastewater
Abstract Rhenium is one of the most valuable elements found in nature, and its capture and recycle are highly desirable for resource recovery. However, the effective and efficient collection of this material from industrial waste remains quite challenging. Herein, a tetraphenylmethane‐based cationic polymeric network (CPN‐tpm) nanotrap is designed, synthesized, and evaluated for ReO4recovery. 3D building units are used to construct imidazolium salt‐based polymers with positive charges, which yields a record maximum uptake capacity of 1133 mg g−1for ReO4collection as well as fast kinetics ReO4uptake. The sorption equilibrium is reached within 20 min and akdvalue of 8.5 × 105mL g−1is obtained. The sorption capacity of CPN‐tpm remains stable over a wide range of pH values and the removal efficiency exceeds 60% for pH levels below 2. Moreover, CPN‐tpm exhibits good recyclability for at least five cycles of the sorption–desorption process. This work provides a new route for constructing a kind of new high‐performance polymeric material for rhenium recovery and rhenium‐contained industrial wastewater treatment.  more » « less
Award ID(s):
1706025 2109500
PAR ID:
10449769
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
17
Issue:
20
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The sorption properties of [Zr 6 O 4 (OH) 4 (NH 3 + -BDC) 6 ]Cl 6 · x H 2 O ( MOR-1 ) and H 16 [Zr 6 O 16 (H 2 PATP) 4 ]Cl 8 · x H 2 O ( MOR-2 ) towards ReO 4 − and TcO 4 − were studied in detail. Both MOR-1 and MOR-2 are very effective sorbents for ReO 4 − and TcO 4 − anions, with MOR-2 showing the highest sorption capacity (up to 4.1 ± 0.4 mmol g −1 ) among the known metal organic materials. Importantly, the exceptional sorption capacity of MOR-2 is retained even under conditions simulating acidic nuclear waste. In addition, MOR-1 and MOR-2 exhibit selective luminescence ReO 4 − sensing properties, demonstrated for the first time for MOF materials. 
    more » « less
  2. Poly(pyridinium salts) (PPSs) with positive charges on the backbones were designed and synthesized from the transformation of bispyrylium salts. Such materials exhibited good uptake capacity for rhenium capture from water, and excellent selectivity of ReO 4 − from competing anions. Furthermore, the advantages of facile synthesis and large-scale preparation make this material promising for practical use in industry. 
    more » « less
  3. Abstract Currently, few porous vanadium metal‐organic frameworks (V‐MOFs) are known and even fewer are obtainable as single crystals, resulting in limited information on their structures and properties. Here this work demonstrates remarkable promise of V‐MOFs by presenting an extensible family of V‐MOFs with tailorable pore geometry and properties. The synthesis leverages inter‐modular synergy on a tri‐modular pore‐partitioned platform. New V‐MOFs show a broad range of structural features and sorption properties suitable for gas storage and separation applications for C2H2/CO2, C2H6/C2H4, and C3H8/C3H6. Thec/aratio of the hexagonal cell, a measure of pore shape, is tunable from 0.612 to 1.258. Other tunable properties include pore size from 5.0 to 10.9 Å and surface area from 820 to 2964 m2g−1. With C2H2/CO2selectivity from 3.3 to 11 and high uptake capacity for C2H2from 65.2 to 182 cm3g−1(298K, 1 bar), an efficient separation is confirmed by breakthrough experiments. The near‐record high uptake for C2H6(166.8 cm3g−1) contributes to the promise for C2H6‐selective separation of C2H6/C2H4. The multi‐module pore expansion enables transition from C3H6‐selective to more desirable C3H8‐selective separation with extraordinarily high C3H8uptake (254.9 cm3g−1) and high separation potential (1.25 mmol g−1) for C3H8/C3H6(50:50 v/v) mixture. 
    more » « less
  4. Abstract Radioactive pertechnetate (TcO4) from the nuclear fuel cycle presents a severe risk to the environment due to its large solubility in water and non‐complexing nature. By utilizing the chaotropic properties of TcO4and its nonradioactive surrogate perrhenate (ReO4) and the principle of chaotropic interactions, a series of quaternary ammonium‐containing polyelectrolyte brush‐grafted silica particles are designed and applied to remove ReO4from water. These cationic hairy particles (HPs) are synthesized by surface‐initiated atom transfer radical polymerization of 2‐(N,N‐dimethylamino)ethyl methacrylate and subsequent quaternization with various halogen compounds. Dynamic light scattering (DLS) studies showed that the HPs with sufficiently longN‐alkyl andN‐benzyl substituents underwent sharp size reduction transitions in water when titrated with a KReO4solution, indicating strong chaotropic interactions between the brushes and ReO4. All the HPs exhibited fast adsorption kinetics; the HPs with longerN‐alkyl andN‐benzyl substituents showed higher capabilities of removing ReO4than those with shorterN‐alkyls. Moreover, the brush particles with longerN‐substituents displayed a significantly stronger ability in selective adsorption of ReO4than the particles with shorterN‐substituents in the presence of competing anions, such as F, Cl, NO3, and SO42−. This work opens a new avenue to design high‐performance adsorbent materials for TcO4and ReO4
    more » « less
  5. Abstract Sorption ofmyo‐inositol hexakisphosphate (IHP), a common type of organic phosphorus in soils, largely controls its mobility and bioavailability. Research on the interaction between IHP and phyllosilicate minerals such as kaolinite, which is commonly present in highly weathered soils, has often been neglected, probably due to the common assumption that negatively charged phyllosilicate minerals have low sorption capacity and binding affinity to IHP and thus do not play any significant role in its fate. Here, the interaction between IHP and poorly crystallized kaolinite (KGa‐2) was investigated in batch experiments using Zeta (ζ) potential measurement and31P nuclear magnetic resonance (NMR) spectroscopy. The results showed that dissolved Al(III) concentration at the adsorption initiation stage increased with increasing IHP concentration at pH 4.0. From pH 2.5 to 9.0, IHP presented a maximum sorption capacity (50 μmol g−1) at pH 4.0 at 24 hr. With IHP sorption, theζpotential of kaolinite first decreased sharply to a negative value, then gradually increased with resorption of Al(III) released from kaolinite dissolution at acidic pH, and finally approached the original value of the pure kaolinite.31P NMR spectroscopy andζpotential analyses revealed that IHP formed inner‐sphere surface complexes and aluminium phytate precipitated on kaolinite at low pH (2.5 and 4.0), whereas the formation of inner‐sphere surface complexes was the dominant sorption mechanism at pH ≥ 5.5. This study implies that various mechanisms, depending on ambient pH condition, can dominate the IHP sorption onto kaolinite, which impacts the mobility and bioavailability of phosphorus in highly weathered soils. HighlightsIHP promotes the dissolution of kaolinite mainly through the formation of aluminium phytate complex.IHP sorption presents a sharp maximum at pH 4.0.IHP forms inner‐sphere complexes at the surface of kaolinite.Formation of aluminium phytate surface precipitates is favourable at relatively low pH. 
    more » « less