skip to main content


Title: Geological Factors Impacted Cadmium Availability and use as an Alternative Cofactor for Zinc in the Carbon Fixation Pathways of Marine Diatoms
Abstract

Transition metal cofactors are crucial for many biological processes. Despite being primarily considered to be toxic, the transition metal cadmium (Cd) was discovered to be a substitute cofactor for zinc (Zn) in photosynthetic carbon fixation pathways of marine diatoms. However, it is not known how conditions in the geosphere impacted Cd availability and its incorporation as an alternative metal cofactor for phytoplankton. We employed mineral chemistry network analysis to investigate which geochemical factors may have influenced the availability of Cd and Zn during the putative time period that the alternative Cd‐based pathway evolved. Our results show that Zn minerals are more chemically diverse than are Cd minerals, but Zn‐ and Cd‐containing minerals have similar network centrality values when specifically considering sulfur (S)‐containing species. Cadmium and Zn sulfides are the most common Cd‐ and Zn‐containing mineral species over the past 500 million years. In particular, the Cd and Zn sulfides, respectively greenockite and sphalerite, were highly abundant during this time period. Furthermore, S‐containing Cd and Zn minerals are commonly co‐located in geologic time, allowing them to be weathered and transported to the ocean in tandem, rather than from separate sources. We suggest that the simultaneous weathering of Cd and Zn sulfides allowed for Cd to be a bioavailable direct substitute for Zn in protein complexes during periods of Zn depletion. The biogeochemical cycles of Zn and Cd exemplify the importance of the coevolution of the geosphere and biosphere in shaping primary production in the modern ocean.

 
more » « less
NSF-PAR ID:
10449790
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
2
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Trace element changes in fluids associated with ore-forming events in sedimentary basins may be recorded by contemporaneous cements, especially zoned carbonate minerals (microstratigraphy). Cement analysis using advanced mapping and analytical techniques including scanning electron microscopy cathodoluminescence (SEM-CL), charge contrast imaging, high-resolution X-ray computed tomography (XCT), and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) documents geochemical changes associated with Mississippi Valley–type mineralization in solution-collapse breccias of the Cambrian–Ordovician Knox Group (Tennessee and Kentucky, USA). Dolomite cement zonation coincident with changes in Fe and Mn can be observed with optical microscope CL in bands as narrow as 5 µm, whereas panchromatic SEM-CL reveals microfractures and cement subzones coincident with changes in La and Ce concentrations in bands as narrow as 0.1 µm. XCT scans image a high-density (Fe-rich) dolomite zone at the onset of late sulfide precipitation. The transition from pre-ore to ore-stage cementation is marked by increased Fe, Mn, Zn, Cd, Ga, Pb, and Sr and decreased La and Ce concentrations. Fine-scale metal depletion cycles during this transition may record metal precipitation from brine in response to the availability of reduced sulfur. Except for Fe and Mn, post-ore dolomite zones generally have low metal concentrations. Thus, dolomite microstratigraphy tracks systematic changes in brine metal concentrations modified by episodes of localized sulfide mineral precipitation. 
    more » « less
  2. Abstract

    Earth surface redox conditions are intimately linked to the co-evolution of the geosphere and biosphere. Minerals provide a record of Earth’s evolving surface and interior chemistry in geologic time due to many different processes (e.g. tectonic, volcanic, sedimentary, oxidative, etc.). Here, we show how the bipartite network of minerals and their shared constituent elements expanded and evolved over geologic time. To further investigate network expansion over time, we derive and apply a novel metric (weighted mineral element electronegativity coefficient of variation; wMEECV) to quantify intra-mineral electronegativity variation with respect to redox. We find that element electronegativity and hard soft acid base (HSAB) properties are central factors in mineral redox chemistry under a wide range of conditions. Global shifts in mineral element electronegativity and HSAB associations represented by wMEECVchanges at 1.8 and 0.6 billion years ago align with decreased continental elevation followed by the transition from the intermediate ocean and glaciation eras to post-glaciation, increased atmospheric oxygen in the Phanerozoic, and enhanced continental weathering. Consequently, network analysis of mineral element electronegativity and HSAB properties reveal that orogenic activity, evolving redox state of the mantle, planetary oxygenation, and climatic transitions directly impacted the evolving chemical complexity of Earth’s crust.

     
    more » « less
  3. Abstract

    The surface waters of the Arctic Ocean include an important inventory of freshwater from rivers, sea ice melt, and glacial meltwaters. While some freshwaters are mixed directly into the surface ocean, cryospheric reservoirs, such as snow, sea ice, and melt ponds act as incubators for trace metals, as well as potential sources to the surface ocean upon melting. The availability and reactivity of these metals depends on their speciation, which may vary across each pool or undergo transformation upon mixing. We present here baseline measurements of colloidal (∼0.003–0.200 μm) iron (Fe), zinc (Zn), nickel (Ni), copper (Cu), cadmium (Cd), and manganese (Mn) in snow, sea ice, melt ponds, and the underlying seawater. We consider both the total concentration of colloidal metals ([cMe]) in each cryospheric reservoir and the contribution of cMe to the overall dissolved metal phase (%cMe). Notably, snow contained higher (cMe) as well as higher %cMe relative to seawater for metals such as Fe and Zn across most stations. Stations close to the North Pole had relatively high aerosol deposition, imparting high (cFe) and (cZn), as well as high %cFe, %cZn, %cMn, and %cCd (>80%). In contrast, surface seawater concentrations of Cd, Cu, Mn, and Ni were dominated by the soluble phase (<0.003 μm), suggesting little impact of cMe from the melting cryosphere, or rapid aggregation/disaggregation dynamics within surface waters leading to the loss of cMe. This has important implications for how trace metal biogeochemistry speciation and thus fluxes may change in a future ice‐free Arctic Ocean.

     
    more » « less
  4. Abstract

    Metal sulfide minerals, including mercury sulfides (HgS), are widespread in hydrothermal vent systems where sulfur‐oxidizing microbes are prevalent. Questions remain as to the impact of mineral composition and structure on sulfur‐oxidizing microbial populations at deep‐sea hydrothermal vents, including the possible role of microbial activity in remobilizing elemental Hg from HgS. In the present study, metal sulfides varying in metal composition, structure, and surface area were incubated for 13 days on and near a diffuse‐flow hydrothermal vent at 9°50′N on the East Pacific Rise. Upon retrieval, incubated minerals were examined by scanning electron microscopy with energy‐dispersive X‐ray spectroscopy (SEM‐EDS), X‐ray diffraction (XRD), and epifluorescence microscopy (EFM). DNA was extracted from mineral samples, and the 16S ribosomal RNA gene sequenced to characterize colonizing microbes. Sulfur‐oxidizing genera common to newly exposed surfaces (Sulfurimonas, Sulfurovum, and Arcobacter) were present on all samples. Differences in their relative abundance between and within incubation sites point to constraining effects of the immediate environment and the minerals themselves. Greater variability in colonizing community composition on off‐vent samples suggests that the bioavailability of mineral‐derived sulfide (as influenced by surface area, crystal structure, and reactivity) exerted greater control on microbial colonization in the ambient environment than in the vent environment, where dissolved sulfide is more abundant. The availability of mineral‐derived sulfide as an electron donor may thus be a key control on the activity and proliferation of deep‐sea chemosynthetic communities, and this interpretation supports the potential for microbial dissolution of HgS at hydrothermal vents.

     
    more » « less
  5. Abstract

    In the Southern Ocean, it is well‐known that iron (Fe) limits phytoplankton growth. Yet, other trace metals can also affect phytoplankton physiology. This study investigated feedbacks between phytoplankton growth and dissolved Fe, manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd) concentrations in Southern Ocean shipboard incubations. Three experiments were conducted in September–October 2016 near the West Antarctic Peninsula: Incubations 1 and 3 offshore in the Antarctic Circumpolar Current, and Incubation 2 inshore in Bransfield Strait. Additions of Fe and/or vitamin B12to inshore and offshore waters were employed and allowed assessment of metal (M) uptake relative to soluble reactive phosphorus (P) across a wide range of initial conditions. Offshore, treatments of >1 nmol L−1added Fe were Fe‐replete, whereas inshore waters were already Fe‐replete. Results suggest Mn was a secondary limiting nutrient inshore and offshore. No Fe‐vitamin B12colimitation was observed. Overall, M:P uptake in the incubations was closely related to initial dissolved M:P for Fe, Mn, Co, Ni, and Cd, and for Cu inshore. Final concentrations of Fe and Zn were similar across light treatments of the experiments despite very different phytoplankton responses, and we observed evidence for Co/Cd/Zn substitution and for recycling of biogenic metals as inventories plateaued. In dark bottles, the absence of Mn oxidation may have allowed more efficient recycling of Fe and other trace metals. Our results provide insight into factors governing trace metal uptake, with implications for phytoplankton community composition locally and preformed micronutrient bioavailability in Southern Ocean water masses.

     
    more » « less