skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: QChASM : Quantum chemistry automation and structure manipulation
Abstract As the tools of computational quantum chemistry have continued to mature, larger and more complex molecular systems have become amenable to computational study. However, studies of these complex systems often require the execution of enormous numbers of computations, which can be a tedious and error‐prone process if done manually. We have developed a suite of free, open‐source tools to facilitate the automation of quantum chemistry workflows. These tools are collected under the organization QChASM (Quantum Chemistry Automation and Structure Manipulation) and include functionality for building and manipulating complex molecular structures and performing routine tasks (AaronTools), a toolkit for automating TS optimizations and predictions of the outcomes of selective homogeneous catalytic reactions, and a plug‐in for UCSF ChimeraX that provides a graphical interface for building complex molecular structures and representing output from quantum chemistry computations. These tools are described below, with a focus on the recent Python implementation of AaronTools. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisSoftware > Quantum Chemistry  more » « less
Award ID(s):
1665407
PAR ID:
10449827
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Computational Molecular Science
Volume:
11
Issue:
4
ISSN:
1759-0876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe a bundle for UCSF ChimeraX called SEQCROW that provides advanced structure editing capabilities and quantum chemistry utilities designed for complex organic and organometallic compounds. SEQCROW includes graphical presets and bond editing tools that facilitate the generation of publication‐quality molecular structure figures while also allowing users to build molecular structures quickly and efficiently by mapping new ligands onto existing organometallic complexes as well as adding rings and substituents. Other capabilities include the ability to visualize vibrational modes and simulated IR spectra, to compute and visualize molecular descriptors including percent buried volume, ligand cone angles, and Sterimol parameters, to process thermochemical corrections from quantum mechanical computations, to generate input files for ORCA, Psi4, and Gaussian, and to run and manage computational jobs. 
    more » « less
  2. Abstract In silico materials design is hampered by the computational complexity of Kohn–Sham DFT, which scales cubically with the system size. Owing to the development of new‐generation kinetic energy density functionals (KEDFs), orbital‐free DFT (OFDFT) can now be successfully applied to a large class of semiconductors and such finite systems as quantum dots and metal clusters. In this work, we present DFTpy, an open‐source software implementing OFDFT written entirely in Python 3 and outsourcing the computationally expensive operations to third‐party modules, such as NumPy and SciPy. When fast simulations are in order, DFTpy exploits the fast Fourier transforms from PyFFTW. New‐generation, nonlocal and density‐dependent‐kernel KEDFs are made computationally efficient by employing linear splines and other methods for fast kernel builds. We showcase DFTpy by solving for the electronic structure of a million‐atom system of aluminum metal which was computed on a single CPU. The Python 3 implementation is object‐oriented, opening the door to easy implementation of new features. As an example, we present a time‐dependent OFDFT implementation (hydrodynamic DFT) which we use to compute the spectra of small metal clusters recovering qualitatively the time‐dependent Kohn–Sham DFT result. The Python codebase allows for easy implementation of application programming interfaces. We showcase the combination of DFTpy and ASE for molecular dynamics simulations of liquid metals. DFTpy is released under the MIT license. This article is categorized under:Software > Quantum ChemistryElectronic Structure Theory > Density Functional TheoryData Science > Computer Algorithms and Programming 
    more » « less
  3. Abstract Aerosol particles are important for our global climate, but the mechanisms and especially the relative importance of various vapors for new particles formation (NPF) remain uncertain. Quantum chemical (QC) studies on organic enhanced nucleation has for the past couple of decades attracted immense attention, but very little remains known about the exact organic compounds that potentially are important for NPF. Here we comprehensively review the QC literature on atmospheric cluster formation involving organic compounds. We outline the potential cluster systems that should be further investigated. Cluster formation involving complex multi‐functional organic accretion products warrant further investigations, but such systems are out of reach with currently applied methodologies. We suggest a “cluster of functional groups” approach to address this issue, which will allow for the identification of the potential structure of organic compounds that are involved in atmospheric NPF. This article is categorized under:Theoretical and Physical Chemistry > Reaction Dynamics and KineticsSoftware > Quantum ChemistryTheoretical and Physical Chemistry > ThermochemistryMolecular and Statistical Mechanics > Molecular Interactions 
    more » « less
  4. Abstract AQME, automated quantum mechanical environments, is a free and open‐source Python package for the rapid deployment of automated workflows using cheminformatics and quantum chemistry. AQME workflows integrate tasks performed across multiple computational chemistry packages and data formats, preserving all computational protocols, data, and metadata for machine and human users to access and reuse. AQME has a modular structure of independent modules that can be implemented in any sequence, allowing the users to use all or only the desired parts of the program. The code has been developed for researchers with basic familiarity with the Python programming language. The CSEARCH module interfaces to molecular mechanics and semi‐empirical QM (SQM) conformer generation tools (e.g., RDKit and Conformer–Rotamer Ensemble Sampling Tool, CREST) starting from various initial structure formats. The CMIN module enables geometry refinement with SQM and neural network potentials, such as ANI. The QPREP module interfaces with multiple QM programs, such as Gaussian, ORCA, and PySCF. The QCORR module processes QM results, storing structural, energetic, and property data while also enabling automated error handling (i.e., convergence errors, wrong number of imaginary frequencies, isomerization, etc.) and job resubmission. The QDESCP module provides easy access to QM ensemble‐averaged molecular descriptors and computed properties, such as NMR spectra. Overall, AQME provides automated, transparent, and reproducible workflows to produce, analyze and archive computational chemistry results. SMILES inputs can be used, and many aspects of tedious human manipulation can be avoided. Installation and execution on Windows, macOS, and Linux platforms have been tested, and the code has been developed to support access through Jupyter Notebooks, the command line, and job submission (e.g., Slurm) scripts. Examples of pre‐configured workflows are available in various formats, and hands‐on video tutorials illustrate their use. This article is categorized under:Data Science > ChemoinformaticsData Science > Computer Algorithms and ProgrammingSoftware > Quantum Chemistry 
    more » « less
  5. Abstract The potential energy of molecular species and their conformers can be computed with a wide range of computational chemistry methods, from molecular mechanics to ab initio quantum chemistry. However, the proper choice of the computational approach based on computational cost and reliability of calculated energies is a dilemma, especially for large molecules. This dilemma is proved to be even more problematic for studies that require hundreds and thousands of calculations, such as drug discovery. On the other hand, driven by their pattern recognition capabilities, neural networks started to gain popularity in the computational chemistry community. During the last decade, many neural network potentials have been developed to predict a variety of chemical information of different systems. Neural network potentials are proved to predict chemical properties with accuracy comparable to quantum mechanical approaches but with the cost approaching molecular mechanics calculations. As a result, the development of more reliable, transferable, and extensible neural network potentials became an attractive field of study for researchers. In this review, we outlined an overview of the status of current neural network potentials and strategies to improve their accuracy. We provide recent examples of studies that prove the applicability of these potentials. We also discuss the capabilities and shortcomings of the current models and the challenges and future aspects of their development and applications. It is expected that this review would provide guidance for the development of neural network potentials and the exploitation of their applicability. This article is categorized under:Data Science > Artificial Intelligence/Machine LearningMolecular and Statistical Mechanics > Molecular InteractionsSoftware > Molecular Modeling 
    more » « less