Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ 13 C, and Δ 14 C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ 14 C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: −228 ± 211 vs. −492 ± 173‰) rather than traditional active layer and permafrost pools (−300 ± 236 vs. −441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO 2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system.
more »
« less
Watershed and Lake Attributes Dictate Landscape Patterns of Resource Flows in Mountain Lakes
Abstract The extent to which terrestrial organic matter supports aquatic consumers remains uncertain because factors regulating resource flows are poorly understood. We sampled 12 lakes throughout the Sierra Nevada (California, USA) spanning large gradients in elevation and size to evaluate how watershed attributes and lake morphometry influence resource flows to lake carbon pools and zooplankton. We found that the size and composition of carbon pools in lakes were often more strongly determined by watershed or lake features rather than by elevational position. Using three different tracers of resource origin (δ13C, Δ14C, C:N ratio), we found terrestrial contributions to most lake resource pools (dissolved organic carbon, particulate organic matter (POM), sediments) and pelagic consumers (zooplankton) were more strongly related to local‐scale watershed features such as vegetation cover or watershed area: lake area rather than to elevation. Landscape patterns in multiple tracers indicated consistent contribution of within‐lake C sources to bulk resource pools across elevations (POM, sediments, zooplankton). δ13C‐enrichment of lake C pools and overlap with δ13C of terrestrial resources can arise due to reduced fractionation of13C by phytoplankton under CO2limitation, therefore we recommend careful consideration of potential environmental drivers when interpreting among‐lake patterns in δ13C. Our findings emphasize the importance of local‐scale variation in mediating terrestrial contributions to lake food webs.
more »
« less
- Award ID(s):
- 1755125
- PAR ID:
- 10449898
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 57
- Issue:
- 4
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post‐depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturationin situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth‐based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite—each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (μm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.more » « less
-
Abstract Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.more » « less
-
Abstract The14C content of sedimentary organic matter (OM) and specific organic molecules provide valuable information on the source and age of OM stored in sediments, but these data are limited for tropical fluvial and lake sediments. We analyzed14C in bulk OM, palmitic acid (C16), and long‐chainn‐alkanoic acids (C24, C26, and C28), within fluvial and lake sediments in the catchment of Lake Izabal, a large tectonic lake basin in Guatemala. We combined these measurements with bulk and compound‐specific δ13C measurements, as well as sediment organic carbon to nitrogen (OC:N) ratios, to understand the source and age of sedimentary OM in different regions of the lake catchment. Most fatty acid and bulk OM samples were characterized by pre‐modern carbon, indicating important input of aged carbon with residence times of hundreds to thousands of years into sediments. We identified two mechanisms leading to aged carbon export to sediments. In the high‐relief and deforested Polochic catchment, older OM and fatty acids are associated with low % total organic carbon (TOC) and low OC:N, indicating aged OM associated with eroded mineral soil. In the smaller, low‐relief, and largely forested Oscuro catchment, old OM and fatty acids are associated with high %TOC and high OC:N ratios, indicating export of undegraded aged plant biomass from swamp peat. The age of bulk OM and fatty acids in Lake Izabal sediments is similar to the ages observed in fluvial sediments, implying that fluvial input of aged soil carbon makes an important contribution to lake sediment carbon reservoirs in this large tropical lake.more » « less
-
Abstract We apply a new approach for the δ13C analysis of single organic‐walled microfossils (OWM) to three sites in the Appalachian Basin of New York (AB) that span the Late Devonian Biotic Crisis (LDBC). Our data provide new insights into the nature of the Frasnian–Famennian carbon cycle in the AB and also provide possible constraints on the paleoecology of enigmatic OWM ubiquitous in Paleozoic shale successions. The carbon isotope compositions of OWM are consistent with normal marine organic matter of autochthonous origins and range from −32 to −17‰, but average −25‰ across all samples and are consistently13C‐enriched compared to bulk sediments (δ13Cbulk) by ~0–10‰. We observe no difference between the δ13COWMof leiospheres (smooth‐walled) and acanthomorphic (spinose) acritarch OWM, indicating that our data are driven by ecological rather than taxonomic signals. We hypothesize that the offset between δ13COWMand δ13Cbulkis in part due to a large δ13C gradient in the AB water column where OWM utilized relatively13C‐enriched dissolved inorganic carbon near the surface. Thus, the organisms producing the balance of the total organic carbon were assimilating13C‐depleted C sources, including but not limited to respired organic carbon or byproducts of fermentation. We also observe a systematic decrease in both δ13COWMand δ13Cbulkof 3‰ from shoreward to open‐ocean facies that may reflect the effect of13C‐enriched dissolved inorganic carbon (DIC) derived from riverine sources in the relatively enclosed AB. The hypothesized steep carbon isotope gradient in the AB could be due to a strong biological pump; this in turn may have contributed to low oxygen bottom water conditions during the LDBC. This is the first time single‐microfossil δ13Corganalyses of eukaryotes have been directly compared to bulk δ13Corgin the deep‐time fossil record.more » « less
An official website of the United States government
