Abstract The extent to which terrestrial organic matter supports aquatic consumers remains uncertain because factors regulating resource flows are poorly understood. We sampled 12 lakes throughout the Sierra Nevada (California, USA) spanning large gradients in elevation and size to evaluate how watershed attributes and lake morphometry influence resource flows to lake carbon pools and zooplankton. We found that the size and composition of carbon pools in lakes were often more strongly determined by watershed or lake features rather than by elevational position. Using three different tracers of resource origin (δ13C, Δ14C, C:N ratio), we found terrestrial contributions to most lake resource pools (dissolved organic carbon, particulate organic matter (POM), sediments) and pelagic consumers (zooplankton) were more strongly related to local‐scale watershed features such as vegetation cover or watershed area: lake area rather than to elevation. Landscape patterns in multiple tracers indicated consistent contribution of within‐lake C sources to bulk resource pools across elevations (POM, sediments, zooplankton). δ13C‐enrichment of lake C pools and overlap with δ13C of terrestrial resources can arise due to reduced fractionation of13C by phytoplankton under CO2limitation, therefore we recommend careful consideration of potential environmental drivers when interpreting among‐lake patterns in δ13C. Our findings emphasize the importance of local‐scale variation in mediating terrestrial contributions to lake food webs.
more »
« less
Aquatic biomass is a major source to particulate organic matter export in large Arctic rivers
Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ 13 C, and Δ 14 C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ 14 C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: −228 ± 211 vs. −492 ± 173‰) rather than traditional active layer and permafrost pools (−300 ± 236 vs. −441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO 2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system.
more »
« less
- PAR ID:
- 10444805
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 12
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change is dramatically altering Arctic ecosystems, leading to shifts in the sources, composition, and eventual fate of riverine dissolved organic matter (DOM) in the Arctic Ocean. Here we examine a 6‐year DOM compositional record from the six major Arctic rivers using Fourier‐transform ion cyclotron resonance mass spectrometry paired with dissolved organic carbon isotope data (Δ14C, δ13C) to investigate how seasonality and permafrost influence DOM, and how DOM export may change with warming. Across the pan‐Arctic, DOM molecular composition demonstrates synchrony and stability. Spring freshet brings recently leached terrestrial DOM with a latent high‐energy and potentially bioavailable subsidy, reconciling the historical paradox between freshet DOM's terrestrial bulk signatures and high biolability. Winter features undiluted baseflow DOM sourced from old, microbially degraded groundwater DOM. A stable core Arctic riverine fingerprint (CARF) is present in all samples and may contribute to the potential carbon sink of persistent, aged DOM in the global ocean. Future warming may lead to shifting sources of DOM and export through: (1) flattening Arctic hydrographs and earlier melt modifying the timing and role of the spring high‐energy subsidy; (2) increasing groundwater discharge resulting in a greater fraction of DOM export to the ocean occurring as stable and aged molecules; and (3) increasing contribution of nitrogen/sulfur‐containing DOM from microbial degradation caused by increased connectivity between groundwater and surface waters due to permafrost thaw. Our findings suggest the ubiquitous CARF (which may contribute to oceanic carbon sequestration) underlies predictable variations in riverine DOM composition caused by seasonality and permafrost extent.more » « less
-
Investigating Thaw and Plant Productivity Constraints on Old Soil Carbon Respiration From PermafrostAbstract Isotopic radiocarbon (Δ14C) signatures of ecosystem respiration (Reco) can identify old soil carbon (C) loss and serve as an early indicator of permafrost destabilization in a warming climate. Warming also stimulates plant productivity causing plant respiration to dominate Reco Δ14C signatures and potentially obscuring old soil C loss. Here, we investigate how a wide spatio‐temporal gradient of permafrost thaw and plant productivity affects Reco Δ14C patterns and isotopic partitioning. Spatial gradients came from a warming experiment with doubling thaw depth and variable biomass, and a vegetation removal manipulation to eliminate plant contributions. We sampled in August and September to capture transitions from high to low plant productivity, decreased surface soil temperature, and relatively small seasonal thaw extensions. We found that surface processes dominate spatial variation in old soil C loss and a process‐based partitioning approach was crucial for constraining old soil C loss. Resampling the same plots in different times of the year revealed that old soil C losses tripled with cooling surface temperature, and the largest old soil C losses were detected when the organic‐to‐mineral soil horizons thawed (∼50–60 cm). We suggest that the measured increase in old soil respiration over the season and when the organic‐to‐mineral horizon thawed, may be explained by mobilization of nitrogen that stimulates microbial decomposition at depth. Our results suggest that soil C in the organic to mineral horizon may be an important source of soil C loss as the entire Arctic region warms and could lead to nonlinearities in projected permafrost climate feedbacks.more » « less
-
Abstract Phosphorus (P) limits or co‐limits plant and microbial life in multiple ecosystems, including the arctic tundra. Although current global carbon (C) models focus on the coupling between soil nitrogen (N) and C, ecosystem P response to climate warming may also influence the global C cycle. Permafrost soils may see enhanced or reduced P availability under climate warming through multiple mechanisms including changing litter inputs through plant community change, changing plant–microbial dynamics, altered rates of mineralization of soil organic P through increased microbial activity, and newly exposed mineral‐bound P via deeper thaw. We investigated the effect of long‐term warming on plant leaf, multiple soil and microbial C, N, and P pools, and microbial extracellular enzyme activities, in Alaskan tundra plots underlain by permafrost. Here, we show that 25 yr of experimental summer warming increases community‐level plant leaf P through changing community composition to favour relatively P‐rich plant species. However, despite associated increases in P‐rich litter inputs, we found only a few responses in the belowground pools of P available for plant and microbial uptake, including a weak positive response for citric acid–extractable PO4in the surface soil, a decrease in microbial biomass P, and no change in soil P (or C or N) stocks. This weak, neutral, or negative belowground P response to warming despite enhanced litter P inputs is consistent with a growing number of studies in the arctic tundra that find no long‐term response of soil C and N stocks to warming.more » « less
-
Abstract Almost half of the global terrestrial soil carbon (C) is stored in the northern circumpolar permafrost region, where air temperatures are increasing two times faster than the global average. As climate warms, permafrost thaws and soil organic matter becomes vulnerable to greater microbial decomposition. Long‐term soil warming of ice‐rich permafrost can result in thermokarst formation that creates variability in environmental conditions. Consequently, plant and microbial proportional contributions to ecosystem respiration may change in response to long‐term soil warming. Natural abundance δ13C and Δ14C of aboveground and belowground plant material, and of young and old soil respiration were used to inform a mixing model to partition the contribution of each source to ecosystem respiration fluxes. We employed a hierarchical Bayesian approach that incorporated gross primary productivity and environmental drivers to constrain source contributions. We found that long‐term experimental permafrost warming introduced a soil hydrology component that interacted with temperature to affect old soil C respiration. Old soil C loss was suppressed in plots with warmer deep soil temperatures because they tended to be wetter. When soil volumetric water content significantly decreased in 2018 relative to 2016 and 2017, the dominant respiration sources shifted from plant aboveground and young soil respiration to old soil respiration. The proportion of ecosystem respiration from old soil C accounted for up to 39% of ecosystem respiration and represented a 30‐fold increase compared to the wet‐year average. Our findings show that thermokarst formation may act to moderate microbial decomposition of old soil C when soil is highly saturated. However, when soil moisture decreases, a higher proportion of old soil C is vulnerable to decomposition and can become a large flux to the atmosphere. As permafrost systems continue to change with climate, we must understand the thresholds that may propel these systems from a C sink to a source.more » « less
An official website of the United States government

