skip to main content


Title: Soil Carbon Isotope Values and Paleoprecipitation Reconstruction
Abstract

Anthropogenic climate change has significant impacts at the ecosystem scale including widespread drought, flooding, and other natural disasters related to precipitation extremes. To contextualize modern climate change, scientists often look to ancient climate changes, such as shifts in ancient precipitation ranges. Previous studies have used fossil leaf organic geochemistry and paleosol inorganic chemistry as paleoprecipitation proxies, but have largely ignored the organic soil layer, which acts as a bridge between aboveground biomass and belowground inorganic carbon accumulation, as a potential recorder of precipitation. We investigate the relationship between stable carbon isotope values in soil organic matter (δ13CSOM) and a variety of seasonal and annual climate parameters in modern ecosystems and find a statistically significant relationship between δ13CSOMvalues and mean annual precipitation (MAP). After testing the relationship between actual and reconstructed precipitation values in modern systems, we test this potential paleoprecipitation proxy in the geologic record by comparing precipitation values reconstructed using δ13CSOMto other reconstructed paleoprecipitation estimates from the same paleosols. This study provides a promising new proxy that can be applied to ecosystems post‐Devonian (∼420 Ma) to the Miocene (∼23 Ma), and in mixed C3/C4ecosystems in the geologic record with additional paleobotanical and palynological information. It also extends paleoprecipitation reconstruction to more weakly developed paleosol types, such as those lacking B‐ horizons, than previous inorganic proxies and is calibrated for wetter environments.

 
more » « less
Award ID(s):
1812949
NSF-PAR ID:
10449967
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
36
Issue:
4
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Interrupting a long‐term Cenozoic cooling trend, the Miocene Climatic Optimum (MCO; ca. 17–15 Ma) represents a time interval characterized globally by warmer than present temperatures, lower ice volume, and elevated pCO2levels. Establishing quantitative Neogene temperature estimates is an important element in the effort to explore the long‐term changes in the carbon cycle and associated climate feedbacks, yet terrestrial temperature records are still sparse. Here, we present a clumped isotope (Δ47) temperature record of the MCO from intermontane basins in the Northern Rocky Mountain (NRM) region. Arikareean (22.7–21.5 Ma) to Barstovian (16.9–14.7 Ma) paleosol carbonates from the Hepburn's Mesa Formation (Montana), supplemented with data from fossil localities in western Idaho. These records yield Δ47‐temperatures ranging from 17°C to 24°C, which are rather warm given the high elevation sites and are further relatively stable (mean of 21 ± 2°C) leading into and during the MCO until ca. 14.7 Ma. At ca. 14.7 Ma, we observe low Δ47‐temperatures (8°C–10°C) concomitantly with elevated Δ47‐temperatures (ca. 22°C). In line with recently suggested climate stability in the NRM region leading into the MCO, our Δ47‐temperature record, combined with carbon isotope (δ13C) and reconstructed soil water oxygen isotope (δ18Osw) values, indicates rather stable climate and environmental conditions throughout the MCO. Combining available records from inland sites in the western United States (NRM, Mojave region) points to prevailing stable continental climates even during the MCO.

     
    more » « less
  2. Abstract

    Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.

     
    more » « less
  3. Abstract

    Fossil‐rich sediments of the Santa Cruz Formation, Patagonia, Argentina, span the initiation of the Miocene Climatic Optimum (MCO), the most recent period of warm and wet conditions in the Cenozoic. These conditions drove the expansion of tropical and subtropical ecosystems to much higher latitudes, with the fossiliferous Santa Cruz Formation recording one of the southernmost examples. We collected new carbon and oxygen isotope compositions of herbivore tooth enamel from fossils ~17.4 to 16.4 Ma in age to investigate ecological and climatic changes across the initiation of the MCO. Enamel δ13C values are consistent with a C3‐dominated ecosystem with moderate precipitation and a mix of wooded and more open areas. Serially sampled teeth reveal little zoning in δ13C and δ18O values, suggesting little seasonal variation in water and plant isotope compositions or seasonal changes in diet. Carbon isotope‐based estimates of mean annual precipitation (MAP) are consistent with aridification, with MAP decreasing from ~1,000 ± 235 mm/yr at 17.4 Ma to ~525 ± 105 mm/yr at the start of the climatic optimum (~16.9 Ma). This decrease corresponds to increasing global temperatures, as indicated by marine proxy records, and was followed by a rebound to ~840 ± 270 mm/yr by ~16.4 Ma. In comparison to a modern mean annual temperature (MAT) in the region of ~8°C, oxygen isotopes indicate high MAT (at least 20°C) at the onset of the MCO at 16.9 Ma and a significant increase in MAT to ~25°C by 16.4 Ma.

     
    more » « less
  4. Tectonically driven physiographic evolution has profound effects on the climate and vegetation of Early Miocene terrestrial ecosystems across eastern Africa, creating habitat heterogeneity. Early hominoids were present on these dynamic landscapes, which likely influenced their evolutionary history. In western Kenya, a series of Early Miocene (ca.19-21Ma) fossiliferous exposures around the now-extinct Tinderet volcano document this history through preservation of hominoid fossils, fossil leaves, tree stump casts, and paleosols. Here, we use multiple proxies to reconstruct the paleoclimate and paleoecology of the fossil site Koru-16. Sedimentological and stratigraphic analysis indicate the landscape was disturbed by periodic eruptions of the volcano followed by intervals of stability, as shown by features of moderate to poorly developed paleosols. Paleoclimate estimates using the paleosol-paleoclimate model (PPM) indicate warm and wet climate conditions. Over 1000 fossil leaves were collected from two stratigraphic intervals. Seventeen morphotypes were identified across both sites, with an unequal distribution of morphotypes. Average leaf size estimate is mesophyll to megaphyll, with mean annual precipitation estimates using leaf physiognomic methods indicate >2000mm/yr. Leaf lifespan reconstructions based on leaf mass per area (MA) proxy indicate the site was predominately evergreen, with few deciduous taxa, with a MA distribution like modern tropical rainforests and tropical seasonal forests in equatorial Africa. Forest density estimates based on fossil tree stump casts indicate an open forest, with density similar to modern tropical forests that support large-bodied primates. Importantly, fossil leaves, tree stump casts, a medium-sized pythonid, a large-bodied hominoid and Proconsul africanus are all found within the same strata, indicating that these early apes lived within the reconstructed Koru-16 ecosystem. Our multi-proxy paleoclimate and paleoecological reconstructions indicate Koru-16 site sampled a very wet and warm climate that supported a tropical seasonal forest to rainforest biome. This likely provided an ideal habitat for hominoids and suggests that forested habitats played a role in the evolution of Early Miocene hominoids. 
    more » « less
  5. Abstract

    Lacustrine δ2H and δ18O isotope proxies are powerful tools for reconstructing past climate and precipitation changes in the Arctic. However, robust paleoclimate record interpretations depend on site‐specific lake water isotope systematics, which are poorly described in the eastern Canadian Arctic due to insufficient modern lake water isotope data. We use modern lake water isotopes (δ18O and δ2H) collected between 1994–1997 and 2017–2021 from a transect of sites spanning a Québec‐to‐Ellesmere Island gradient to evaluate the effects of inflow seasonality and evaporative enrichment on the δ2H and δ18O composition of lake water. Four lakes near Iqaluit, Nunavut sampled biweekly through three ice‐free seasons reflect mean annual precipitation isotopes with slight evaporative enrichment. In a 23° latitudinal transect of 181 lakes, through‐flowing lake water δ2H and δ18O fall along local meteoric water lines. Despite variability within each region, we observe a latitudinal pattern: southern lakes reflect mean annual precipitation isotopes, whereas northern lakes reflect summer‐biased precipitation isotopes. This pattern suggests that northern lakes are more fully flushed with summer precipitation, and we hypothesize that this occurs because the ratio of runoff to precipitation increases with latitude as vegetation cover decreases. Therefore, proxy records from through‐flowing lakes in this region should reflect precipitation isotopes with minimal influence of evaporation, but vegetation changes in lake catchments across a latitudinal transect and through geologic time may influence the seasonality of lake water isotopic compositions. Thus, we recommend that future lake water isotope proxy records are considered in context with temperature and ecological proxy records.

     
    more » « less