Sperm competition is found across multicellular organisms using both external and internal fertilization. Sperm competition and post-copulatory cryptic female choice can promote incompatibility between species due to antagonistic co-evolution of the sexes within a species. This between-species incompatibility is accelerated and markedly asymmetrical when sexual mode differs, producing the “weak inbreeder, strong outcrosser” (WISO) pattern. Here, we show that male secreted short (MSS) sperm glycoproteins of nematodes constitute a gametic effector of WISO. In obligately outcrossing Caenorhabditis, MSS is dispensable for baseline fertility but required for intraspecific sperm competitiveness. MSS is lost in self-fertile lineages, likely as a response to selection for a hermaphrodite-biased sex ratio. Selfing hermaphrodites that mate with males of closely related outcrossing species are rapidly sterilized due to ovarian sperm invasion. The simplification of the male proteome in selfing species suggests many factors could contribute to invasivity. However, restoration of just MSS to the self-fertile C. briggsae is sufficient to induce mild invasivity. Further, MSS+ sperm appear to derive their competitive advantage from this behavior, directly linking interspecies incompatibility with intraspecific competition. MSS-related proteins (MSRPs) remaining in the C. briggsae genome are similar in structure, expression, and localization to MSS, but are not necessary for normal sperm competitiveness. Further, over-expression of the MSRP most similar to MSS, Cbr-MSRP-3, is insufficient to enhance competitiveness. We conclude that outcrossing species retain sperm competition factors that contribute to their reproductive isolation from selfing relatives that lost them.
more »
« less
Sperm competition, sexual selection and the diverse reproductive biology of Osteoglossiformes
Abstract Osteoglossiformes are an order of “bony tongue” fish considered the most primitive living order of teleosts. This review seeks to consolidate known hypotheses and identify gaps in the literature regarding the adaptive significance of diverse reproductive traits and behaviour of osteoglossiforms within the context of sperm competition and the wider lens of sexual selection. Many of the unusual traits observed in osteoglossiforms indicate low levels of sperm competition; most species have unpaired gonads, and mormyroids are the only known vertebrate species with aflagellate sperm. Several osteoglossiform families have reproductive anatomy associated with internal fertilization but perform external fertilization, which may be representative of the evolutionary transition from external to internal fertilization and putative trade‐offs between sperm competition and the environment. They also employ every type of parental care seen in vertebrates. Geographically widespread and basally situated within teleosts, osteoglossiforms present an effective study system for understanding how sperm competition and sexual selection have shaped the evolution of teleost reproductive behaviour, sperm and gonad morphology, fertilization strategies, courtship and paternal care, and sexual conflict. The authors suggest that the patterns seen in osteoglossiform reproduction are a microcosm of teleost reproductive diversity, potentially signifying the genetic plasticity that contributed to the adaptive radiation of teleost fishes.
more »
« less
- Award ID(s):
- 1644965
- PAR ID:
- 10449969
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Fish Biology
- Volume:
- 99
- Issue:
- 3
- ISSN:
- 0022-1112
- Page Range / eLocation ID:
- p. 740-754
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract It remains unclear how variation in the intensity of sperm competition shapes phenotypic and molecular evolution across clades. Mice and rats in the subfamily Murinae are a rapid radiation exhibiting incredible diversity in sperm morphology and production. We combined phenotypic and genomic data to perform phylogenetic comparisons of male reproductive traits and genes across 78 murine species. We identified several shifts towards smaller relative testes mass (RTM), presumably reflecting reduced sperm competition. Several sperm traits were associated with RTM, suggesting that mating system evolution selects for convergent suites of traits related to sperm competitive ability. We predicted that sperm competition would also drive more rapid molecular divergence in species with large testes. Contrary to this, we found that many spermatogenesis genes evolved more rapidly in species with smaller RTM due to relaxed purifying selection. While some reproductive genes evolved rapidly under recurrent positive selection, relaxed selection played a greater role in underlying rapid evolution in small testes species. Our work demonstrates that postcopulatory sexual selection can impose strong purifying selection shaping the evolution of male reproduction and that broad patterns of molecular evolution may help identify genes that contribute to male fertility.more » « less
-
ABSTRACT Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm ‘capacitation’, was discovered nearly seven decades ago and opened a window into the complexities of sperm–female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post‐ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non‐mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage‐specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm–female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post‐copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS‐related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.more » « less
-
Abstract While extensive research has focused on how social interactions evolve, the fitness consequences of the neuroendocrine mechanisms underlying these interactions have rarely been documented, especially in the wild. Here, we measure how the neuroendocrine mechanisms underlying male behaviour affect mating success and sperm competition in the ocellated wrasse (Symphodus ocellatus). In this species, males exhibit three alternative reproductive types. “Nesting males” provide parental care, defend territories and form cooperative associations with unrelated “satellites,” who cheat by sneaking fertilizations but help by reducing sperm competition from “sneakers” who do not cooperate or provide care. To measure the fitness consequences of the mechanisms underlying these social interactions, we used “phenotypic engineering” that involved administering an androgen receptor antagonist (flutamide) to wild, free‐living fish. Nesting males treated with flutamide shifted their aggression from sneakers to satellite males and experienced decreased submissiveness by sneaker males (which correlated with decreased nesting male mating success). The preoptic area (POA), a region controlling male reproductive behaviours, exhibited dramatic down‐regulation of androgen receptor (AR) and vasotocin 1a receptor (V1aR) mRNA following experimental manipulation of androgen signalling. We did not find a direct effect of the manipulation on male mating success, paternity or larval production. However, variation in neuroendocrine mechanisms generated by the experimental manipulation was significantly correlated with changes in behaviour and mating success: V1aR expression was negatively correlated with satellite‐directed aggression, and expression of its ligand arginine vasotocin (AVT) was positively correlated with courtship and mating success, thus revealing the potential for sexual selection on these mechanisms.more » « less
-
Abstract In contrast to sexual selection on traits that affect interactions between the sexes before mating, little theoretical research has focused on the coevolution of postmating traits via cryptic female choice (when females bias fertilization toward specific males). We used simulation models to ask (a) whether and, if so, how nondirectional cryptic female choice (female-by-male interactions in fertilization success) causes deviations from models that focus exclusively on male-mediated postmating processes, and (b) how the risk of sperm competition, the strength of cryptic female choice, and tradeoffs between sperm number and sperm traits interact to influence the coevolutionary dynamics between cryptic female choice and sperm traits. We found that incorporating cryptic female choice can result in males investing much less in their ejaculates than predicted by models with sperm competition only. We also found that cryptic female choice resulted in the evolution of genetic correlations between cryptic female choice and sperm traits, even when the strength of cryptic female choice was weak, and the risk of sperm competition was low. This suggests that cryptic female choice may be important even in systems with low multiple mating. These genetic correlations increased with the risk of sperm competition and as the strength of cryptic female choice increased. When the strength of cryptic female choice and risk of sperm competition was high, extreme codivergence of sperm traits and cryptic female choice preference occurred even when the sperm trait traded off with sperm number. We also found that male traits lagged behind the evolution of female traits; this lag decreased with increasing strength of cryptic female choice and risk of sperm competition. Overall, our results suggest that cryptic female choice deserves more attention theoretically and may be driving trait evolution in ways just beginning to be explored.more » « less
An official website of the United States government
