Upon vascular injury, platelets form a hemostatic plug by binding to the subendothelium and to each other. Platelet-to-matrix binding is initially mediated by von Willebrand Factor (VWF) and platelet-to-platelet binding is mediated mainly by fibrinogen and VWF. After binding, the actin cytoskeleton of a platelet drives its contraction, generating traction forces that are important to the cessation of bleeding. Our understanding of the relationship between adhesive environment, F-actin morphology, and traction forces is limited. Here, we examined F-actin morphology of platelets attached to surfaces coated with fibrinogen and VWF. We identified distinct F-actin patterns induced by these protein coatings and found that these patterns were identifiable into three classifications via machine learning: solid, nodular, and hollow. We observed that traction forces for platelets were significantly higher on VWF than on fibrinogen coatings and these forces varied by F-actin pattern. Additionally, we analyzed the F-actin orientation in platelets and noted that their filaments were more circumferential when on fibrinogen coatings and having a hollow F-actin pattern, while they were more radial on VWF and having a solid F-actin pattern. Finally, we noted that subcellular localization of traction forces corresponded to protein coating and F-actin pattern: VWF-bound, solid platelets had higher forces at their central region while fibrinogen-bound, hollow platelets had higher forces at their periphery. These distinct F-actin patterns on fibrinogen and VWF and their differences in F-actin orientation, force magnitude, and force localization could have implications in hemostasis, thrombus architecture, and venous versus arterial thrombosis.
more »
« less
Ultrasound‐Responsive Nanopeptisomes Enable Synchronous Spatial Imaging and Inhibition of Clot Growth in Deep Vein Thrombosis
Abstract Deep vein thrombosis (DVT) is a life‐threatening blood clotting condition that, if undetected, can cause deadly pulmonary embolisms. Critical to its clinical management is the ability to rapidly detect, monitor, and treat thrombosis. However, current diagnostic imaging modalities lack the resolution required to precisely localize vessel occlusions and enable clot monitoring in real time. Here, we rationally design fibrinogen‐mimicking fluoropeptide nanoemulsions, or nanopeptisomes (NPeps), that allow contrast‐enhanced ultrasound imaging of thrombi and synchronous inhibition of clot growth. The theranostic duality of NPeps is imparted via their intrinsic binding to integrins overexpressed on platelets activated during coagulation. The platelet‐bound nanoemulsions can be vaporized and oscillate in an applied acoustic field to enable contrast‐enhanced Doppler ultrasound detection of thrombi. Concurrently, nanoemulsions bound to platelets competitively inhibit secondary platelet–fibrinogen binding to disrupt further clot growth. Continued development of this synchronous theranostic platform may open new opportunities for image‐guided, non‐invasive, interventions for DVT and other vascular diseases.
more »
« less
- Award ID(s):
- 1845053
- PAR ID:
- 10450082
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Healthcare Materials
- Volume:
- 10
- Issue:
- 16
- ISSN:
- 2192-2640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Non‐invasive imaging modalities that identify rupture‐prone atherosclerotic plaques hold promise to improve patient risk stratification and advance early intervention strategies. Here, phase‐changing peptide nanoemulsions are developed as theranostic contrast agents for synchronous ultrasound detection and therapy of at‐risk atherosclerotic lesions. By targeting lipids within atherogenic foam cells, and exploiting characteristic features of vulnerable plaques, these nanoemulsions preferentially accumulate within lesions and are retained by intraplaque macrophages. It is demonstrated that acoustic vaporization of intracellular nanoemulsions promotes lipid efflux from foam cells and generates echogenic microbubbles that provide contrast‐enhanced ultrasound identification of lipid‐rich anatomical sites. In Doppler mode, stably oscillating peptide nanoemulsions induce random amplitude and phase changes of the echo wave to generate transient color imaging features, referred to as ‘twinkling’. Importantly, acoustic twinkling is unique to these peptide emulsions, and not observed from endogenous tissue bubble nuclei, generating diagnostic features that offer unprecedented spatial precision of lesion identification in 3D.more » « less
-
Uncontrolled bleeding after trauma represents a substantial clinical problem. The current standard of care to treat bleeding after trauma is transfusion of blood products including platelets; however, donated platelets have a short shelf life, are in limited supply, and carry immunogenicity and contamination risks. Consequently, there is a critical need to develop hemostatic platelet alternatives. To this end, we developed synthetic platelet-like particles (PLPs), formulated by functionalizing highly deformable microgel particles composed of ultralow cross-linked poly (N-isopropylacrylamide) with fibrin-binding ligands. The fibrin-binding ligand was designed to target to wound sites, and the cross-linking of fibrin polymers was designed to enhance clot formation. The ultralow cross-linking of the microgels allows the particles to undergo large shape changes that mimic platelet shape change after activation; when coupled to fibrin-binding ligands, this shape change facilitates clot retraction, which in turn can enhance clot stability and contribute to healing. Given these features, we hypothesized that synthetic PLPs could enhance clotting in trauma models and promote healing after clotting. We first assessed PLP activity in vitro and found that PLPs selectively bound fibrin and enhanced clot formation. In murine and porcine models of traumatic injury, PLPs reduced bleeding and facilitated healing of injured tissue in both prophylactic and immediate treatment settings. We determined through biodistribution experiments that PLPs were renally cleared, possibly enabled by ultrasoft particle properties. The performance of synthetic PLPs in the preclinical studies shown here supports future translational investigation of these hemostatic therapeutics in a trauma setting.more » « less
-
Abstract Platelets play a pivotal role in hemostasis and wound healing and conditional shape change is an important component of platelet functionality. In normal circumstances, platelets travel through the circulatory system in an inactive rounded state, which enables platelets to easily move to vessel walls for attachment. When an injury occurs, platelets are prompted by molecules, such as thrombin, to shift into a stellate shape and increase exposure of fibrin‐binding receptors. When active, platelets promote hemostasis and clot retraction, which enhances clot stability and promotes healing. However, in conditions where platelets are depleted or hyporeactive, these functions are diminished and lead to inhibited hemostasis and healing. To treat platelet depletion, our group developed platelet‐like particles (PLPs) which consist of highly deformable microgels coupled to fibrin binding motif. However, first generation PLPs do not exhibit wound‐triggered shape change like native platelets. Thus, the objective of these studies was to develop a PLP formulation that changes shape when prompted by thrombin. To create thrombin‐sensitive PLPs (TS‐PLPs), we incorporated a thrombin‐cleavable peptide into the microgel body and then evaluated PLP properties before and after exposure to thrombin including morphology, size, and in vitro clot retraction. Once thrombin‐prompted shape change ability was confirmed, the TS‐PLPs were tested in vivo for hemostatic ability and subsequent wound healing outcomes in a murine liver trauma model. We found that TS‐PLPs exhibit a wound‐triggered shape change, induce significant clot retraction following exposure to thrombin and promote hemostasis and healing in vivo after trauma.more » « less
-
Hagemeyer, Christoph E (Ed.)The search persists for a safe and effective agent to lyse arterial thrombi in the event of acute heart attacks or strokes due to thrombotic occlusion. The culpable thrombi are composed either primarily of platelets and von Willebrand Factor (VWF), or polymerized fibrin, depending on the mechanism of formation. Current thrombolytics were designed to target red fibrin-rich clots, but may be not be efficacious on white VWF-platelet-rich arterial thrombi. We have developed an in vitro system to study the efficacy of known and proposed thrombolytic agents on white clots formed from whole blood in a stenosis with arterial conditions. The agents and adjuncts tested were tPA, ADAMTS-13, abciximab, N-acetyl cysteine, and N,N’-Diacetyl-L-cystine (DiNAC). Most of the agents, including tPA, had little thrombolytic effect on the white clots. In contrast, perfusion of DiNAC lysed thrombi as quickly as 1.5 min, which ranged up to 30 min at lower concentrations, and resulted in an average reduction in surface area of 71 ± 20%. The clot burden was significantly reduced compared to both tPA and a saline control ( p <0.0001). We also tested the efficacy of all agents on red fibrinous clots formed in stagnant conditions. DiNAC did not lyse red clots, whereas tPA significantly lysed red clot over 48 h ( p <0.01). These results lead to a novel use for DiNAC as a possible thrombolytic agent against acute arterial occlusions that could mitigate the risk of hyper-fibrinolytic bleeding.more » « less
An official website of the United States government
