skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Phyllotis xanthopygus complex (Rodentia, Cricetidae) in central Andes, systematics and description of a new species
Abstract PhyllotisWaterhouse 1837 is one of the most studied genera of South American cricetid rodents. As currently understood, it includes 20 small to medium‐sized species of predominantly rocky habitats. Among them, populations of the yellow‐rumped leaf‐eared mouse, traditionally referred toP. xanthopygus(Waterhouse 1837), are the most widely distributed, extending from central Peru to southern Chile and Argentina. Based mostly on molecular evidence, previous studies suggested thatP. xanthopygusconstitutes a species complex, being characterized by geographically structured and genetically divergent clades. In this work, we compare the molecular phylogenetic hypothesis for populations distributed on the eastern slopes of the central Andes with morphometric evidence using univariate and multivariate analyses. Quantitative morphological and molecular evidence suggests that at least four nearly cryptic species of theP. xanthopyguscomplex occur from southern Bolivia to west‐central Argentina. Three of these taxa have available names; one of them,P. caprinus, is currently recognized to the species level; the other two, the clades ofP. x. posticalis‐P. x. rupestrisandP. vaccarum, are both recognized as subspecies ofP. xanthopygus. The remaining taxon represents a new species distributed in the west‐central Andes of Argentina. We discuss our morphological results in the light of other sources of evidence (e.g. qualitative and quantitative state characters, genetic and phylogenetic studies, and cytogenetic data) and name the new species asP. pehuenche, honouring the original native people that historically inhabited west‐central Andes of Argentina.  more » « less
Award ID(s):
1754748 0841447 0108422
PAR ID:
10450130
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Zoologica Scripta
Volume:
50
Issue:
6
ISSN:
0300-3256
Page Range / eLocation ID:
p. 689-706
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The northern temperate genusDracocephalumconsists of approximately 70 species mainly distributed in the steppe‐desert biomes of Central and West Asia and the alpine region of the Qinghai‐Tibetan Plateau (QTP). Previous work has shown thatDracocephalumis not monophyletic and might includeHyssopusandLallemantia. This study attempts to clarify the phylogenetic relationships, diversification patterns, and the biogeographical history of the three genera (defined asDracocephalums.l.). Based on a sampling of 66 taxa comprising more than 80% from extant species ofDracocephalums.l., morphological, phylogenetic (maximum parsimony, likelihood, and Bayesian inference based on nuclear ITS and ETS, plastidrpl32‐trnL,trnL‐trnF,ycf1, andycf1‐rps15, and two low‐copy nuclear markersAT3G09060andAT1G09680), molecular dating, diversification, and ancestral range estimation analyses were carried out. Our results demonstrate that bothHyssopusandLallemantiaare embedded withinDracocephalumand nine well‐supported clades can be recognized withinDracocephalums.l. Analyses of divergence times suggest that the genus experienced an early rapid radiation during the middle to late Miocene with major lineages diversifying within a relatively narrow timescale. Ancestral area reconstruction analyses indicate thatDracocephalums.l. originated in Central and West Asia and southern Siberia, and dispersed from Central and West Asia into the QTP and adjacent areas twice independently during the Pliocene. The aridification of the Asian interior possibly promoted the rapid radiation ofDracocephalumwithin this region, and the uplift of the QTP appears to have triggered the dispersal and recent rapid diversification of the genus in the QTP and adjacent regions. Combining molecular phylogenetic and morphological evidence, a revised infrageneric classification ofDracocephalums.l. is proposed, which recognizes nine sections within the genus. 
    more » « less
  2. Abstract Based on previously published molecular (mitochondrial) and herein provided morphological (qualitative and quantitative data) evidence, we describe a new species of leaf-eared mouse of the genus Phyllotis . The new species is morphometrically distinct when compared with other phylogenetically or geographically close species of Phyllotis , showing several quantitative differences in their external and craniodental characters (e.g., proportionally broader nasals and interorbital region, and proportionally smaller tympanic bullae). The new species is endemic to central Argentina, occurring on rocky grasslands at elevations of 650–2,800 m a.s.l. This is the only species of Phyllotis inhabiting the Central Sierras, a mountain system of medium elevation, isolated from the Andes by low elevation arid and semiarid environments. 
    more » « less
  3. Abstract The terrestrial isopod genusLigidiumincludes 58 species from Europe, Asia, and North America. In Eastern North America four species are recognized:L. floridanumandL. mucronatum, known just from their type localities in Florida and Louisiana respectively,L. blueridgensis, endemic to the southern Appalachians, andL. elrodii, widespread from Georgia to Ontario. The genus shows a marked morphological conservatism, and species are differentiated mostly by small morphological differences; it is not always easy to determine if such variability represents inter‐ or intraspecific variation. Here, we explore the diversity ofLigidiumfrom the southern Appalachian Mountains, exploring the congruence of morphologically defined groups with multilocus phylogenetic reconstructions and molecular species delimitation methods. We have studied a total of 130 specimens from 37 localities, mostly from the southern Appalachians, and analysed mtDNA (Cox1) and nuclear (28S, NaK) sequences. Morphologically, we recognized eight morphotypes, most of them assignable to current concepts ofL.elrodiiandL.blueridgensis. Phylogenetic analyses supported the evolutionary independence of all morphotypes, and suggest the existence of 8–9 species, including limited cryptic diversity. Single‐locus delimitation analyses based on mtDNA data suggest the existence of a much higher number of species than the multilocus analyses. The estimated age of the ancestors of sampled lineages indicates a long presence of the genus in eastern North America and old speciation events through the Miocene. Our results indicate a higher diversity than previously thought among theLigidiumpopulations present in the southern Appalachian Mountains, with several species to be described. 
    more » « less
  4. Abstract The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman,Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades ofS. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia. 
    more » « less
  5. null (Ed.)
    The cutthroat trout (Oncorhynchus clarkii (Richardson, 1836)) is one of the most widely distributed species of freshwater fish in western North America. Occupying a diverse range of habitats, they exhibit significant phenotypic variability that is often recognized by intraspecific taxonomy. Recent molecular phylogenies have described phylogenetic diversification across cutthroat trout populations, but no study has provided a range-wide morphological comparison of taxonomic divisions. In this study, we used linear- and geometric-based morphometrics to determine if phylogenetic and subspecies divisions correspond to morphological variation in cutthroat trout, using replicate populations from throughout the geographic range of the species. Our data indicate significant morphological divergence of intraspecific categories in some, but not all, cutthroat trout subspecies. We also compare morphological distance measures with distance measures of mtDNA sequence divergence. DNA sequence divergence was positively correlated with morphological distance measures, indicating that morphologically more similar subspecies have lower sequence divergence in comparison to morphologically distant subspecies. Given these results, integrating both approaches to describing intraspecific variation may be necessary for developing a comprehensive conservation plan in wide-ranging species. 
    more » « less