skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncovering cryptic diversity does not end: a new species of leaf-eared mouse, genus Phyllotis (Rodentia, Cricetidae), from Central Sierras of Argentina
Abstract Based on previously published molecular (mitochondrial) and herein provided morphological (qualitative and quantitative data) evidence, we describe a new species of leaf-eared mouse of the genus Phyllotis . The new species is morphometrically distinct when compared with other phylogenetically or geographically close species of Phyllotis , showing several quantitative differences in their external and craniodental characters (e.g., proportionally broader nasals and interorbital region, and proportionally smaller tympanic bullae). The new species is endemic to central Argentina, occurring on rocky grasslands at elevations of 650–2,800 m a.s.l. This is the only species of Phyllotis inhabiting the Central Sierras, a mountain system of medium elevation, isolated from the Andes by low elevation arid and semiarid environments.  more » « less
Award ID(s):
1754748
PAR ID:
10415734
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Mammalia
Volume:
86
Issue:
4
ISSN:
0025-1461
Page Range / eLocation ID:
393 to 405
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PhyllotisWaterhouse 1837 is one of the most studied genera of South American cricetid rodents. As currently understood, it includes 20 small to medium‐sized species of predominantly rocky habitats. Among them, populations of the yellow‐rumped leaf‐eared mouse, traditionally referred toP. xanthopygus(Waterhouse 1837), are the most widely distributed, extending from central Peru to southern Chile and Argentina. Based mostly on molecular evidence, previous studies suggested thatP. xanthopygusconstitutes a species complex, being characterized by geographically structured and genetically divergent clades. In this work, we compare the molecular phylogenetic hypothesis for populations distributed on the eastern slopes of the central Andes with morphometric evidence using univariate and multivariate analyses. Quantitative morphological and molecular evidence suggests that at least four nearly cryptic species of theP. xanthopyguscomplex occur from southern Bolivia to west‐central Argentina. Three of these taxa have available names; one of them,P. caprinus, is currently recognized to the species level; the other two, the clades ofP. x. posticalis‐P. x. rupestrisandP. vaccarum, are both recognized as subspecies ofP. xanthopygus. The remaining taxon represents a new species distributed in the west‐central Andes of Argentina. We discuss our morphological results in the light of other sources of evidence (e.g. qualitative and quantitative state characters, genetic and phylogenetic studies, and cytogenetic data) and name the new species asP. pehuenche, honouring the original native people that historically inhabited west‐central Andes of Argentina. 
    more » « less
  2. Abstract Biologists have long pondered the extreme limits of life on Earth, including the maximum elevation at which species can live and reproduce. Here we review evidence of a self-sustaining population of mice at an elevation that exceeds that of all previously reported for mammals. Five expeditions over 10 years to Volcán Llullaillaco on the Argentina/Chile border observed and collected mice at elevations ranging from 5,070 m at the mountain’s base to the summit at 6,739 m (22,110 feet). Previously unreported evidence includes observations and photographs of live animals and mummified remains, environmental DNA, and a soil microbial community reflecting animal activity that are evaluated in combination with previously reported video recordings and capture of live mice. All of the evidence identifies the mouse as the leaf-eared mouse Phyllotis vaccarum, and it robustly places the population within a haplotype group containing individuals from the Chilean Atacama Desert and nearby regions of Argentina. A critical review of the literature affirms that this population is not only an elevational record for mammals but for all terrestrial vertebrates to date, and we further find that many extreme elevations previously reported for mammals are based on scant or dubious evidence. 
    more » « less
  3. Summary Phenotypic and genomic diversity inArabidopsis thalianamay be associated with adaptation along its wide elevational range, but it is unclear whether elevational clines are consistent among different mountain ranges.We took a multi‐regional view of selection associated with elevation. In a diverse panel of ecotypes, we measured plant traits under alpine stressors (low CO2partial pressure, high light, and night freezing) and conducted genome‐wide association studies.We found evidence of contrasting locally adaptive regional clines. Western Mediterranean ecotypes showed low water use efficiency (WUE)/early flowering at low elevations to high WUE/late flowering at high elevations. Central Asian ecotypes showed the opposite pattern. We mapped different candidate genes for each region, and some quantitative trait loci (QTL) showed elevational and climatic clines likely maintained by selection. Consistent with regional heterogeneity, trait and QTL clines were evident at regional scales (c. 2000 km) but disappeared globally. Antioxidants and pigmentation rarely showed elevational clines. High elevation east African ecotypes might have higher antioxidant activity under night freezing.Physiological and genomic elevational clines in different regions can be unique, underlining the complexity of local adaptation in widely distributed species, while hindering global trait–environment or genome–environment associations. To tackle the mechanisms of range‐wide local adaptation, regional approaches are thus warranted. 
    more » « less
  4. Abstract The Andes, with its diverse topography and climate, is a renowned cradle for adaptive radiation, particularly for vertebrate ectotherms such as lizards. Yet, the role of temperature in promoting physiological specialization in the Andes remains unclear. Aseasonality in the tropics should favour physiological specialization across elevation in lizards, but empirical data are limited and equivocal. Determining how thermal tolerances are geographically and phylogenetically structured is therefore a priority, particularly as environments continue to change rapidly. However, there is a gap in our knowledge of thermal limits of species from the Andes, one of the planet’s most biodiverse regions. Anoles, a diverse lizard group found across thousands of metres of elevation in the Andes, can offer insights into evolutionary adaptations to temperature. This study focused on 14 anole species from two clades (Dactyloa and Draconura) that independently diversified along elevational gradients in the Andes. We measured critical thermal limits (CTmin and CTmax) and found patterns of thermal tolerance specialization across elevation, both among and within species. Patterns of thermal specialization are similar among anole clades, indicating parallel responses to similar environmental pressures. Specifically, high-elevation anoles are more cold tolerant and less heat tolerant than their low-elevation counterparts, rendering thermal tolerance breadths stable across elevation (thermal specialization). Evolutionary rates of physiological traits were similar, reflecting parallel specialization in heat and cold tolerance across elevation. The adaptive radiation of anole lizards reflects physiological specialization across elevation, and the endemism such specialization favours, probably catalysed their remarkable diversity in the tropical Andes. 
    more » « less
  5. Abstract We report an elevational record for the Andean sigmodontine Puna Mouse Punomys, which is also the first record of the genus in Chile. The record is based on a mummified specimen that we discovered at an elevation of 5,461 m (17,917 feet) in the caldera of Volcán Acamarachi, Región de Antofagasta, Chile. Results of a morphological assessment suggest that the specimen can be provisionally referred to the species P. lemminus. This new record also extends the known geographic distribution of the genus by 700 km to the south and brings the known Chilean mammal richness to a total of 170 living species and 88 genera. This finding highlights the need for increased survey efforts in more remote, high-elevation regions and demonstrates that there is still much to be learned about the mammal fauna of the Andean Altiplano. 
    more » « less