skip to main content


Title: Current and future approaches to wet weather flow management: A review
Abstract Practitioner points

Combined (CSO) and sanitary sewer overflows (SSOs) pose both environmental and public health risks as untreated water is discharged into lakes and rivers during high‐intensity rain events.

Current stand‐alone approaches for managing or treating CSOs focus on particulate BOD/COD and solids removal, and do not typically address soluble BOD or emerging contaminants in stormwater and wastewater (including pathogens).

New wet weather policies and regulations encourage more holistic approaches by wastewater utilities, and future approaches should include a zero‐overflow goal for all CSOs and SSOs.

To help achieve zero overflows, the concept of the “peaker facility” is proposed.

Chemical oxidation may be an applicable component of peaker facilities for its short detention time and ability to remove, oxidize, or inactive water impairment‐causing contaminants.

 
more » « less
NSF-PAR ID:
10450171
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Water Environment Research
Volume:
93
Issue:
8
ISSN:
1061-4303
Format(s):
Medium: X Size: p. 1179-1193
Size(s):
["p. 1179-1193"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Practitioner Points

    SARS‐CoV‐2 in wastewater correlated best with total clinical cases reported in 2 weeks before wastewater sampling at the utility level.

    Study performed when clinical testing was widespread during the year after the first COVID‐19 wave in the region.

    Sewer type and size did not necessarily explain correlation strength between clinical cases and wastewater‐based epidemiology results.

    Removing wet weather days improved correlations for 3/4 utilities studied, including both separate sanitary and combined sewers.

     
    more » « less
  2. Abstract Practitioner Points

    PPCP removal positively correlated with solids retention time and varied by treatment facility and compound.

    Upgrade of WWTFs for biological nitrogen removal may also increase PPCP removal.

    Surface water fluoxetine concentrations may present an ecological risk to the Great Bay Estuary.

     
    more » « less
  3. Sanitary sewer overflows (SSOs) are a common problem across the United States. An estimated number of 23 000–75 000 SSOs occurred in 2004, discharging between 11 and 38 billion liters of untreated wastewater to receiving waters. SSOs release many contaminants, including engineered nanomaterials (ENMs), to receiving water bodies. Measuring ENM concentrations in environmental samples remains a key challenge in environmental nanotechnology and requires the distinction between natural and engineered particles. This distinction between natural and engineered particles is often hampered by the similarities in the intrinsic properties of natural and engineered particles, such as particle size, composition, density, and surface chemistry, and by the limitations of the available nanometrology tools. To overcome these challenges, we applied a multi-method approach to measure the concentrations and properties of TiO 2 engineered particles ( e.g. , ENMs and pigments) including: 1) multi element-single particle-inductively coupled plasma-mass spectrometry (ME-SP-ICP-MS) to identify elemental associations and to determine elemental ratios in natural particles, 2) calculation of total elemental concentrations and ratios from total metal concentrations measured following total sample digestion to estimate engineered particle concentrations, and 3) transmission electron microscopy (TEM) to characterize engineered particle size and morphology. ME-SP-ICP-MS analysis revealed that natural TiO 2 particles are often associated with at least one of the following elements: Al, Fe, Ce, Si, La, Zr, Nb, Pb, Ba, Th, Ta, W and U, and that elemental ratios of Ti to these elements, except Pb, are typical of riverine particulates and the average crustal ratios. High TiO 2 engineered particle concentrations up to 100 μg L −1 were found in SSO-impacted surface waters. TEM analysis demonstrated the presence of regular-shape TiO 2 particles in SSO-impacted surface waters. This study provides a comprehensive approach for measuring TiO 2 engineered particle concentrations in surface waters. The quantitative data produced in this work can be used as input for modeling studies and pave the way for routine monitoring of ENMs in environmental systems, validation of ENM fate models, and more accurate ENM exposure and risk assessment. 
    more » « less
  4. A combined sewer system (CSS) collects rainwater runoff, domestic sewage, and industrial wastewater in the same pipe. The volume of wastewater can sometimes exceed the system capacity during heavy rainfall events. When this occurs, untreated stormwater and wastewater discharge directly to nearby streams, rivers, and other water bodies. This would threaten public health and the environment, contributing to drinking water contamination and other concerns. Minimizing sewer overflows requires an optimization method that can provide an optimal sequence of decision variables at control gates. Conventional strategies use classical optimization algorithms, such as genetic algorithms and pattern search, to find the optimal sequence of decision variables. However, these conventional frameworks are very time-consuming, and it is almost impossible to achieve near real-time optimal control. This paper presents a faster optimization framework by using a new optimal control tool: reinforcement learning. The environment (flow modeler) used in this paper is the numerical model: Environmental Protection Agency’s Storm Water Management Model (EPA SWMM) to ensure the accuracy of environment response. The reward function is constructed based on the calculated water depth and overflow rate from SWMM. The process keeps minimizing the reward function to obtain the optimal flow release sequence at each controlled orifice gate. The combined sewer system (CSS) of the Puritan-Fenkell 7-mile facility in Detroit, MI, is chosen as the case study. 
    more » « less
  5. Abstract

    Combined sewer overflows (CSOs) occur when untreated raw sewage mixed with rainwater, runoff, or snowmelt is released during or after a storm in any community with a combined sewer system (CSS). Climate change makes CSOs worse in many locales; as the frequency and severity of wet weather events increases, so do the frequency and volume of CSO events. CSOs pose risks to humans and the environment, and as such, CSS communities are under regulatory pressure to reduce CSOs. Yet, CSS communities lack the tools needed, such as performance indicators, to assess CSS performance. Using the city of Cumberland, Maryland as a case study, we use public data on CSOs and precipitation over a span of 16 years to identify a new critical rainfall intensity threshold that triggers likely CSO incidence, and a multiple linear regression model to predict CSO volume using rainfall event characteristics. Together, this indicator and modeling approach can help CSS communities assess the performance of their CSS over time, especially to evaluate the effectiveness of efforts to reduce CSOs.

     
    more » « less