skip to main content


Title: Sin Nombre virus prevalence from 2014–2017 in wild deer mice, Peromyscus maniculatus , on five of the California Channel Islands
Abstract

Sin Nombre virus (SNV) is a zoonotic virus that is highly pathogenic to humans. The deer mouse,Peromyscus maniculatus, is the primary host of SNV, and SNV prevalence inPmaniculatusis an important indicator of human disease risk. Because the California Channel Islands contain permanent human settlements, receive hundreds of thousands of visitors each year, and can have extremely high densities ofPmaniculatus, surveillance for SNV in islandPmaniculatusis important for understanding the human risk of zoonotic disease. Despite the importance of surveillance on these heavily utilized islands, SNV prevalence (i.e. the proportion ofPmaniculatusthat test positive to antibodies to SNV) has not been examined in the last 13–27 years. We present data on 1,610 mice sampled for four consecutive years (2014–2017) on five of the California Channel Islands: East Anacapa, Santa Barbara, Santa Catalina, San Nicolas, and San Clemente. Despite historical data indicating SNV‐positive mice on San Clemente and Santa Catalina, we detected no SNV‐positive mice on these islands, suggesting very low prevalence or possible loss of SNV. Islands historically free of SNV (East Anacapa, Santa Barbara, and San Nicolas) remained free of SNV, suggesting that rates of pathogen introduction from other islands and/or the mainland are low. Although continued surveillance is warranted to determine whether SNV establishes on these islands, our work helps inform current human disease risk in these locations and suggests that SNV prevalence on these islands is currently very low.

 
more » « less
Award ID(s):
1439550
NSF-PAR ID:
10450211
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Zoonoses and Public Health
Volume:
68
Issue:
7
ISSN:
1863-1959
Format(s):
Medium: X Size: p. 849-853
Size(s):
["p. 849-853"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the forces that drive genotypic and phenotypic change in wild populations is a central goal of evolutionary biology. We examined exome variation in populations of deer mice from two of the California Channel Islands:Peromyscus maniculatus elususfrom Santa Barbara Island andP. m. santacruzaefrom Santa Cruz Island exhibit significant differences in olfactory predator recognition, activity timing, aggressive behavior, morphology, prevalence of Sin Nombre virus, and population densities. We characterized variation in protein‐coding regions using exome capture and sequencing of 25 mice from Santa Barbara Island and 22 mice from Santa Cruz Island. We identified and examined 386,256 SNPs using three complementary methods (BayeScan, pcadapt, and LFMM). We found strong differences in molecular variation between the two populations and 710 outlier SNPs in protein‐coding genes that were detected by all three methods. We identified 35 candidate genes from this outlier set that were related to differences in phenotypes between island populations. Enrichment analyses demonstrated that patterns of molecular variation were associated with biological processes related to response to chemical stimuli and regulation of immune processes. Candidate genes associated with olfaction (Gfy,Tlr2,Vmn13r2, numerous olfactory receptor genes), circadian activity (Cry1), anxiety (Brca1), immunity (Cd28,Eif2ak4, Il12a,Syne1), aggression (Cyp19a,Lama2), and body size (Bc16,Syne1) exhibited non‐synonymous mutations predicted to have moderate to large effects. Variation in olfaction‐related genes, including a stop codon in the Santa Barbara Island population, suggests loss of predator‐recognition traits at the molecular level, consistent with a lack of behavioral aversion to fox feces. These findings also suggest that divergent pathogen prevalence and population density may have influenced adaptive immunity and behavioral phenotypes, such as reduced aggression. Overall, our study indicates that ecological differences between islands are associated with signatures of selection in protein‐coding genes underlying phenotypes that promote success in those environments.

     
    more » « less
  2. Hantavirus outbreaks in the American Southwest are hypothesized to be driven by episodic seasonal events of high precipitation, promoting rapid increases in virus-reservoir rodent species that then move across the landscape from high quality montane forested habitats (refugia), eventually over-running human residences and increasing disease risk. In this study, the velocities of rodents and virus diffusion wave propagation and retraction were documented and quantified in the sky-islands of northern New Mexico and related to rodent-virus relationships in refugia versus nonrefugia habitats. Deer mouse (Peromyscus maniculatus) refugia populations exhibited higher Sin Nombre Virus (SNV) infection prevalence than nonrefugia populations. The velocity of propagating diffusion waves of Peromyscus from montane to lower grassland habitats was measured at [Formula: see text] m/day (SE), with wave retraction velocities of [Formula: see text] m/day. SNV infection diffusion wave propagation velocity within a deer mouse population averaged [Formula: see text] m/day, with a faster retraction wave velocity of [Formula: see text] m/day. A spatio-temporal analysis of human Hantavirus Pulmonary Syndrome (HPS) cases during the initial 1993 epidemic revealed a positive linear relationship between the time during the epidemic and the distance of human cases from the nearest deer mouse refugium, with a landscape diffusion wave velocity of [Formula: see text] m/day ([Formula: see text]). These consistent diffusion propagation wave velocity results support the traveling wave component of the HPS outbreak theory and can provide information on space–time constraints for future outbreak forecasts. 
    more » « less
  3. Abstract

    Allen's Hummingbird comprises two subspecies, one migratory (Selasphorus sasin sasin) and one nonmigratory (S. s. sedentarius). The nonmigratory subspecies, previously endemic to the California Channel Islands, apparently colonized the California mainland on the Palos Verdes Peninsula some time before 1970 and now breeds throughout coastal southern California. We sequenced and compared populations of mainland nonmigratory Allen's Hummingbird to Channel Island populations from Santa Catalina, San Clemente, and Santa Cruz Island. We found no evidence of founder effects on the mainland population. Values of nucleotide diversity on the mainland were higher than on the Channel Islands. There were low levels of divergence between the Channel Islands and the mainland, and Santa Cruz Island was the most genetically distinct. Ecological niche models showed that rainfall and temperature variables on the Channel Islands are similar in the Los Angeles basin and predicted continued expansion of nonmigratory Allen's Hummingbird north along the coast and inland. We also reviewed previous genetic studies of vertebrate species found on the Channel Islands and mainland and showed that broad conclusions regarding island–mainland patterns remain elusive. Challenges include the idiosyncratic nature of colonization itself as well as the lack of a comprehensive approach that incorporates similar markers and sampling strategies across taxa, which, within the context of a comparative study of island–mainland relationships, may lead to inconsistent results.

     
    more » « less
  4. Abstract

    Urban development has major impacts on connectivity among wildlife populations and is thus likely an important factor shaping pathogen transmission in wildlife. However, most investigations of wildlife diseases in urban areas focus on prevalence and infection risk rather than potential effects of urbanization on transmission itself. Feline immunodeficiency virus (FIV) is a directly transmitted retrovirus that infects many felid species and can be used as a model for studying pathogen transmission at landscape scales. We investigated phylogenetic relationships among FIV isolates sampled from five bobcat (Lynx rufus) populations in coastal southern California that appear isolated due to major highways and dense urban development. Divergence dates among FIV phylogenetic lineages in several cases reflected historical urban growth and construction of major highways. We found strong FIV phylogeographic structure among three host populations north‐west of Los Angeles, largely coincident with host genetic structure. In contrast, relatively little FIV phylogeographic structure existed among two genetically distinct host populations south‐east of Los Angeles. Rates of FIV transfer among host populations did not vary significantly, with the lack of phylogenetic structure south‐east of Los Angeles unlikely to reflect frequent contemporary transmission among populations. Our results indicate that major barriers to host gene flow can also act as barriers to pathogen spread, suggesting potentially reduced susceptibility of fragmented populations to novel directly transmitted pathogens. Infrequent exchange of FIV among host populations suggests that populations would best be managed as distinct units in the event of a severe disease outbreak. Phylogeographic inference of pathogen transmission is useful for estimating the ability of geographic barriers to constrain disease spread and can provide insights into contemporary and historical drivers of host population connectivity.

     
    more » « less
  5. Abstract

    The California horn shark (Heterodontus francisci) is a small demersal species distributed from southern California and the Channel Islands to Baja California and the Gulf of California. These nocturnal reef predators maintain small home-ranges as adults and lay auger-shaped egg cases that become wedged into the substrate. While population trends are not well documented, this species is subject to fishing pressure through portions of its range and has been identified as vulnerable to overexploitation. Here, we present a survey of 318 specimens from across the range, using mtDNA control region sequences to provide the first genetic assessment of H. francisci. Overall population structure (ΦST = 0.266, P < 0.001) is consistent with limited dispersal as indicated by life history, with two distinct features. Population structure along the continuous coastline is low, with no discernable breaks from Santa Barbara, CA to Bahia Tortugas (Baja California Sur, Mexico); however, there is a notable partition at Punta Eugenia (BCS), a well-known biogeographic break between tropical and subtropical marine faunas. In contrast, population structure is much higher (max ΦST = 0.601, P < 0.05) between the coast and adjacent Channel Islands, a minimum distance of 19 km, indicating that horn sharks rarely disperse across deep habitat and open water. Population structure in most elasmobranchs is measured on a scale of hundreds to thousands of kilometers, but the California Horn Shark has population partitions on an unprecedented small scale, indicating a need for localized management strategies which ensure adequate protection of distinct stocks.

     
    more » « less