skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Rhodoexplorer Platform for Red Algal Genomics and Whole-Genome Assemblies for Several Gracilaria Species
Abstract Macroalgal (seaweed) genomic resources are generally lacking as compared with other eukaryotic taxa, and this is particularly true in the red algae (Rhodophyta). Understanding red algal genomes is critical to understanding eukaryotic evolution given that red algal genes are spread across eukaryotic lineages from secondary endosymbiosis and red algae diverged early in the Archaeplastids. The Gracilariales is a highly diverse and widely distributed order including species that can serve as ecosystem engineers in intertidal habitats and several notorious introduced species. The genus Gracilaria is cultivated worldwide, in part for its production of agar and other bioactive compounds with downstream pharmaceutical and industrial applications. This genus is also emerging as a model for algal evolutionary ecology. Here, we report new whole-genome assemblies for two species (Gracilaria chilensis and Gracilaria gracilis), a draft genome assembly of Gracilaria caudata, and genome annotation of the previously published Gracilaria vermiculophylla genome. To facilitate accessibility and comparative analysis, we integrated these data in a newly created web-based portal dedicated to red algal genomics (https://rhodoexplorer.sb-roscoff.fr). These genomes will provide a resource for understanding algal biology and, more broadly, eukaryotic evolution.  more » « less
Award ID(s):
2141971
PAR ID:
10450243
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Editor(s):
Castric, Vincent
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
15
Issue:
7
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Rhodophyta (or red algae) are a diverse and species‐rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron‐poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years. 
    more » « less
  2. Abstract Over the last 2 decades, routine collections in the Hawaiian Archipelago have expanded to mesophotic reefs, leading to the discovery of a new red algal genus and species, here described asAnunuuluaehu liulagen. et sp. nov. This study provides a detailed genus and species description and characterizes chloroplast and mitochondrial organellar genomes. The new genus,Anunuuluaehu, shares many characteristics with the family Phyllophoraceae and shows close similarities toArchestennogrammaandStenogramma, including habit morphology, nemathecia forming proliferations at the outer cortex with terminal chains of tetrasporangia, and carposporophytes with multi‐layered pericarps. The single species in this genus exhibits distinctive features within the Phyllophoraceae: the presence of single‐layer construction of large medullary cells and the development of long, tubular gonimoblastic filaments. Multi‐gene phylogenetic analyses confirmed it as a unique, monophyletic lineage within the family. Cis‐splicing genes, interrupted by intron‐encoded proteins within group II introns, are present in both the chloroplast and mitochondrial genomes ofA. liula. Notably, a specific region of thecoxI group II intron exhibits similarity to fungal introns.Anunuuluaehu liulais presumed to be endemic to the Hawaiian Archipelago and thus far is known to live solely at mesophotic depths from Hōlanikū to Kaho‘olawe ranging from 54 to 201 m, which is the deepest collection record of any representative in the family. Overall, this study enhances our understanding of the genomic and taxonomic complexities of red algae in mesophotic habitats, emphasizing the significance of continued research in this area to uncover further insights into evolutionary processes and biogeographic patterns. 
    more » « less
  3. Abstract The cytoskeleton has a central role in eukaryotic biology, enabling cells to organize internally, polarize, and translocate. Studying cytoskeletal machinery across the tree of life can identify common elements, illuminate fundamental mechanisms, and provide insight into processes specific to less‐characterized organisms. Red algae represent an ancient lineage that is diverse, ecologically significant, and biomedically relevant. Recent genomic analysis shows that red algae have a surprising paucity of cytoskeletal elements, particularly molecular motors. Here, we review the genomic and cell biological evidence and propose testable models of how red algal cells might perform processes including cell motility, cytokinesis, intracellular transport, and secretion, given their reduced cytoskeletons. In addition to enhancing understanding of red algae and lineages that evolved from red algal endosymbioses (e.g., apicomplexan parasites), these ideas may also provide insight into cytoskeletal processes in animal cells. 
    more » « less
  4. The ciliate genus Paramecium served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. Paramecium species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of Paramecium research, the ancient Paramecium aurelia species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties. 
    more » « less
  5. Abstract Fungi play pivotal roles in terrestrial ecosystems as decomposers, pathogens, and endophytes, yet their significance in marine environments is often understudied. Seagrasses, as globally distributed marine flowering plants, have critical ecological functions, but knowledge about their associated fungal communities remains relatively limited. Previous amplicon surveys of the fungal community associated with the seagrass,Zostera marinahave revealed an abundance of potentially novel chytrids. In this study, we employed deep metagenomic sequencing to extract metagenome-assembled genomes (MAGs) from these chytrids and other microbial eukaryotes associated withZ. marinaleaves. Our efforts resulted in the recovery of five eukaryotic MAGs, including a single fungal MAG in the order Loubulomycetales (65% BUSCO completeness), three MAGs representing diatoms in the family Bacillariaceae (93%, 70% and 31% BUSCO completeness) and a single MAG representing a haptophyte algae in the genusPrymnesium(40% BUSCO completeness). Whole-genome phylogenomic assessment of these MAGs suggests they all largely represent under sequenced, and possibly novel eukaryotic lineages. Of particular interest, the chytrid MAG was placed within the order Lobulomycetales, consistent with the identity of the dominant chytrid from previousZ. marinaamplicon survey results. Annotation of this MAG yielded 5,650 gene models of which 77% shared homology to current databases. With-in these gene models, we predicted 121 carbohydrate-active enzymes and 393 secreted proteins (103 cytoplasmic effectors, 30 apoplastic effectors). Exploration of orthologs between the Lobulomycetales MAG and existing Chytridiomycota genomes have revealed a landscape of high-copy gene families related to host recognition and interaction. Further machine learning analyses based on carbohydrate-active enzyme composition predict that this MAG is a symbiont. Overall, these five eukaryotic MAGs represent substantial genomic novelty and valuable community resources, contributing to a deeper understanding of the roles of fungi and other microbial eukaryotes in the larger seagrass ecosystem. 
    more » « less