skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Monte Carlo augmented with normalizing flows
Many problems in the physical sciences, machine learning, and statistical inference necessitate sampling from a high-dimensional, multimodal probability distribution. Markov Chain Monte Carlo (MCMC) algorithms, the ubiquitous tool for this task, typically rely on random local updates to propagate configurations of a given system in a way that ensures that generated configurations will be distributed according to a target probability distribution asymptotically. In high-dimensional settings with multiple relevant metastable basins, local approaches require either immense computational effort or intricately designed importance sampling strategies to capture information about, for example, the relative populations of such basins. Here, we analyze an adaptive MCMC, which augments MCMC sampling with nonlocal transition kernels parameterized with generative models known as normalizing flows. We focus on a setting where there are no preexisting data, as is commonly the case for problems in which MCMC is used. Our method uses 1) an MCMC strategy that blends local moves obtained from any standard transition kernel with those from a generative model to accelerate the sampling and 2) the data generated this way to adapt the generative model and improve its efficacy in the MCMC algorithm. We provide a theoretical analysis of the convergence properties of this algorithm and investigate numerically its efficiency, in particular in terms of its propensity to equilibrate fast between metastable modes whose rough location is known a priori but respective probability weight is not. We show that our algorithm can sample effectively across large free energy barriers, providing dramatic accelerations relative to traditional MCMC algorithms.  more » « less
Award ID(s):
2134216
PAR ID:
10450255
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
10
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a generative model-based framework for learning collective variables (CVs) that faithfully capture the individual metastable states of the fulldimensional molecular dynamics (MD) systems. Unlike most existing approaches based on various feature extraction strategies, the new framework transfers the exhausting efforts of feature selection into a generative task of reconstructing the full-dimensional probability density function (PDF) from a set of CVs under a prior distribution with pre-assigned local maxima. By pairing the CVs with a set of auxiliary Gaussian random variables, we seek an invertible mapping that recovers the full-dimensional PDF and meanwhile, preserves the correspondence between the metastable states of the MD space and individual local maxima of the prior distribution. Through identifying the metastable states within MD space that are generally unknown and imposing the correspondence between the two spaces, the constructed CVs retain clear physical interpretations and provide kinetic insight for the molecular systems on the collective scale. We demonstrate the effectiveness of the proposed method with the alanine dipeptide in the aqueous environment. The constructed CVs faithfully capture the essential metastable states of the full MD systems, which show good agreement with kinetic properties such as the transition from the ballistic to the plateau regime for the mean square displacement. 
    more » « less
  2. Daumé III, Hal; Singh, Aarti (Ed.)
    Thompson sampling for multi-armed bandit problems is known to enjoy favorable performance in both theory and practice. However, its wider deployment is restricted due to a significant computational limitation: the need for samples from posterior distributions at every iteration. In practice, this limitation is alleviated by making use of approximate sampling methods, yet provably incorporating approximate samples into Thompson Sampling algorithms remains an open problem. In this work we address this by proposing two efficient Langevin MCMC algorithms tailored to Thompson sampling. The resulting approximate Thompson Sampling algorithms are efficiently implementable and provably achieve optimal instance-dependent regret for the Multi-Armed Bandit (MAB) problem. To prove these results we derive novel posterior concentration bounds and MCMC convergence rates for log-concave distributions which may be of independent interest. 
    more » « less
  3. This paper studies the unsupervised cross-domain translation problem by proposing a generative framework, in which the probability distribution of each domain is represented by a generative cooperative network that consists of an energy based model and a latent variable model. The use of generative cooperative network enables maximum likelihood learning of the domain model by MCMC teaching, where the energy-based model seeks to fit the data distribution of domain and distills its knowledge to the latent variable model via MCMC. Specifically, in the MCMC teaching process, the latent variable model parameterized by an encoder-decoder maps examples from the source domain to the target domain, while the energy-based model further refines the mapped results by Langevin revision such that the revised results match to the examples in the target domain in terms of the statistical properties, which are defined by the learned energy function. For the purpose of building up a correspondence between two unpaired domains, the proposed framework simultaneously learns a pair of cooperative networks with cycle consistency, accounting for a two-way translation between two domains, by alternating MCMC teaching. Experiments show that the proposed framework is useful for unsupervised image-to-image translation and unpaired image sequence translation. 
    more » « less
  4. Belkin, M.; Kpotufe, S. (Ed.)
    Langevin algorithms are gradient descent methods with additive noise. They have been used for decades in Markov Chain Monte Carlo (MCMC) sampling, optimization, and learning. Their convergence properties for unconstrained non-convex optimization and learning problems have been studied widely in the last few years. Other work has examined projected Langevin algorithms for sampling from log-concave distributions restricted to convex compact sets. For learning and optimization, log-concave distributions correspond to convex losses. In this paper, we analyze the case of non-convex losses with compact convex constraint sets and IID external data variables. We term the resulting method the projected stochastic gradient Langevin algorithm (PSGLA). We show the algorithm achieves a deviation of 𝑂(𝑇−1/4(𝑙𝑜𝑔𝑇)1/2) from its target distribution in 1-Wasserstein distance. For optimization and learning, we show that the algorithm achieves 𝜖-suboptimal solutions, on average, provided that it is run for a time that is polynomial in 𝜖 and slightly super-exponential in the problem dimension. 
    more » « less
  5. Bessani, Alysson; Défago, Xavier; Nakamura, Junya; Wada, Koichi; Yamauchi, Yukiko (Ed.)
    Markov Chain Monte Carlo (MCMC) algorithms are a widely-used algorithmic tool for sampling from high-dimensional distributions, a notable example is the equilibirum distribution of graphical models. The Glauber dynamics, also known as the Gibbs sampler, is the simplest example of an MCMC algorithm; the transitions of the chain update the configuration at a randomly chosen coordinate at each step. Several works have studied distributed versions of the Glauber dynamics and we extend these efforts to a more general family of Markov chains. An important combinatorial problem in the study of MCMC algorithms is random colorings. Given a graph G of maximum degree Δ and an integer k ≥ Δ+1, the goal is to generate a random proper vertex k-coloring of G. Jerrum (1995) proved that the Glauber dynamics has O(nlog{n}) mixing time when k > 2Δ. Fischer and Ghaffari (2018), and independently Feng, Hayes, and Yin (2018), presented a parallel and distributed version of the Glauber dynamics which converges in O(log{n}) rounds for k > (2+ε)Δ for any ε > 0. We improve this result to k > (11/6-δ)Δ for a fixed δ > 0. This matches the state of the art for randomly sampling colorings of general graphs in the sequential setting. Whereas previous works focused on distributed variants of the Glauber dynamics, our work presents a parallel and distributed version of the more general flip dynamics presented by Vigoda (2000) (and refined by Chen, Delcourt, Moitra, Perarnau, and Postle (2019)), which recolors local maximal two-colored components in each step. 
    more » « less