skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 1, 2024

Title: Toward a Permafrost Vulnerability Index for Critical Infrastructure, Community Resilience and National Security
There has been a growth in the number of composite indicator tools used to assess community risk, vulnerability, and resilience, to assist study and policy planning. However, existing research shows that these composite indicators vary extensively in method, selected variables, aggregation methods, and sample size. The result is a plethora of qualitative and quantitative composite indices to choose from. Despite each providing valuable location-based information about specific communities and their qualities, the results of studies, each using disparate methods, cannot easily be integrated for use in decision making, given the different index attributes and study locations. Like many regions in the world, the Arctic is experiencing increased variability in temperatures as a direct consequence of a changing planetary climate. Cascading effects of changes in permafrost are poorly characterized, thus limiting response at multiple scales. We offer that by considering the spatial interaction between the effects of permafrost, infrastructure, and diverse patterns of community characteristics, existing research using different composite indices and frameworks can be augmented. We used a system-science and place-based knowledge approach that accounts for sub-system and cascade impacts through a proximity model of spatial interaction. An estimated ‘permafrost vulnerability surface’ was calculated across Alaska using two existing indices: relevant infrastructure and permafrost extent. The value of this surface in 186 communities and 30 military facilities was extracted and ordered to match the numerical rankings of the Denali Commission in their assessment of permafrost threat, allowing accurate comparison between the permafrost threat ranks and the PVI rankings. The methods behind the PVI provide a tool that can incorporate multiple risk, resilience, and vulnerability indices to aid adaptation planning, especially where large-scale studies with good geographic sample distribution using the same criteria and methods do not exist.  more » « less
Award ID(s):
1927718 1636476 1832238 1927713
NSF-PAR ID:
10450256
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Geographies
Volume:
3
Issue:
3
ISSN:
2673-7086
Page Range / eLocation ID:
522 to 542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lankes, R.David (Ed.)
    Resilience is often treated as a single-dimension system attribute, or various dimensions of resilience are studied separately without considering multi-dimensionality. The increasing frequency of catastrophic natural or man-made disasters affecting rural areas demands holistic assessments of community vulnerability and assessment. Disproportionate effects of disasters on minorities, low-income, hard-to-reach, and vulnerable populations demand a community-oriented planning approach to address the “resilience divide.” Rural areas have many advantages, but low population density, coupled with dispersed infrastructures and community support networks, make these areas more affected by natural disasters. This paper will catalyze three key learnings from our current work in public librarians’ roles in disaster resiliency: 1) rural communities are composed of diverse sub-communities, each which experiences and responds to traumatic events differently, depending on micro-geographic and demographic drivers; 2) public libraries are central to rural life, providing a range of informational, educational, social, and personal services, especially in remote areas that lack reliable access to community resources during disasters; and 3) rural citizens tend to be very self-reliant and are committed to strengthening and sustaining community resiliency with local human capital and resources. Public libraries and their librarian leaders are often a “crown jewel” of rural areas’ community infrastructure and this paper will present a community-based design and assessment process for resiliency hubs located in and operated through rural public libraries. The core technical and social science research questions explored in the proposed paper are: 1) Who were the key beneficiaries and what did they need? 2) What was the process of designing a resiliency hub? 3) What did library resiliency hubs provide and how can they be sustained? This resiliency hub study will detail co-production of solutions and involves an inclusive collaboration among researchers, librarians, and community members to address the effects of cascading impacts of natural disasters. The novel co-design process detailed in the paper reflects 1) an in-depth understanding of the complex interactions among libraries, residents, governments, and other agencies by collecting sociotechnical hurricane-related data for Calhoun County, Florida, USA, a region devastated by Hurricane Michael (2018) and hard-hit by Covid-19; 2) analyzed data from newly-developed fusing algorithms and incorporating multiple communities; and 3) co-designed resiliency hubs sited in public libraries. This research leverages a unique opportunity for the co-development of integrated library-centered policies and technologies to establish a new paradigm for developing disaster resiliency in rural settings. Public libraries serve a diverse population who will directly benefit from practical support tailored to their needs. The project will inform efficient plans to ensure that high-need groups are not isolated in disasters. The knowledge and insight gained from disseminating the study’s results will not only improve our understanding of emergency response operations, but also will contribute to the development of new disaster-related policies and plans for public libraries, with a broader application to rural communities in many settings. 
    more » « less
  2. Lankes, R. David (Ed.)
    Resilience is often treated as a single-dimension system attribute, or various dimensions of resilience are studied separately without considering multi-dimensionality. The increasing frequency of catastrophic natural or man-made disasters affecting rural areas demands holistic assessments of community vulnerability and assessment. Disproportionate effects of disasters on minorities, low-income, hard-to-reach, and vulnerable populations demand a community-oriented planning approach to address the “resilience divide.” Rural areas have many advantages, but low population density, coupled with dispersed infrastructures and community support networks, make these areas more affected by natural disasters. This paper will catalyze three key learnings from our current work in public librarians’ roles in disaster resiliency: rural communities are composed of diverse sub-communities, each which experiences and responds to traumatic events differently, depending on micro-geographic and demographic drivers. Rural citizens tend to be very self-reliant and are committed to strengthening and sustaining community resiliency with local human capital and resources. Public libraries are central to rural life, providing a range of informational, educational, social, and personal services, especially in remote areas that lack reliable access to community resources during disasters. Public libraries and their librarian leaders are often a “crown jewel” of rural areas’ community infrastructure and this paper will present a community-based design and assessment process for resiliency hubs located in and operated through rural public libraries. The core technical and social science research questions explored in the proposed paper are: 1) Who were the key beneficiaries and what did they need? 2) What was the process of designing a resiliency hub? 3) What did library resiliency hubs provide and how can they be sustained? This resiliency hub study will detail co-production of solutions and involves an inclusive collaboration among researchers, librarians, and community members to address the effects of cascading impacts of natural disasters. The novel co-design process detailed in the paper reflects an in-depth understanding of the complex interactions among libraries, residents, governments, and other agencies by collecting sociotechnical hurricane-related data for Calhoun County, Florida, USA, a region devastated by Hurricane Michael (2018) and hard-hit by Covid-19. We analyzed data from newly developed fusing algorithms and incorporating multiple communities and developed a framework and process to co-design resiliency hubs sited in public libraries. This research leverages a unique opportunity to library-centered policies and technologies to establish a new paradigm for developing disaster resiliency in rural settings. Public libraries serve a diverse population who will directly benefit from practical support tailored to their needs. The project will inform efficient plans to ensure that high-need groups are not isolated in disasters. The knowledge and insight gained from the resiliency hub design process will not only improve our understanding of emergency response operations, but also will contribute to the development of new disaster related policies and plans for public libraries, with a broader application to rural communities in many settings. 
    more » « less
  3. Strong hurricane winds often cause severe infrastructure damage and pose social and economic consequences in coastal communities. In the context of community resilience planning, estimating such impacts can facilitate developing more risk-informed mitigation plans in the community of interest. This study presents a new framework for synthetically simulating scenario-hurricane winds using a parametric wind field model for predicting community-level building damage, direct economic loss, and social consequences. The proposed synthetic scenario approach uses historical hurricane data and adjusts its original trajectory to create synthetic change scenarios and estimates peak gust wind speed at the location of each building. In this research, a stochastic damage simulation algorithm is applied to assess the buildings’ physical damage. The algorithm assigns a damage level to each building using the corresponding damage-based fragility functions, predicted maximum gust speed at the building’s location, and a randomly generated number. The monetary loss to the building inventory due to its physical damage is determined using FEMA’s direct loss ratios and buildings’ replacement costs considering uncertainty. To assess the social impacts of the physical damage exposure, three likely post-disaster social disruptions are measured, including household dislocation, employment disruption, and school closures. The framework is demonstrated by its application to the hurricane-prone community of Onslow County, North Carolina. The novel contribution of the developed framework, aside from the introduced approach for spatial predicting hurricane-induced wind hazards, is its ability to illuminate some aspects of the social consequences of substantial physical damages to the building inventory in a coastal community due to the hurricane-induced winds. These advancements enable community planners and decision-makers to make more risk-informed decisions for improving coastal community resilience.

     
    more » « less
  4. Although the literature provides valuable insight into tornado vulnerability and resilience, there are still research gaps in assessing tornadoes’ impact on communities and transportation infrastructure, especially in the wake of the rapidly changing frequency and strength of tornadoes due to climate change. In this study, we first investigated the relationship between tornado exposure and demographic-, socioeconomic-, and transportation-related factors in our study area, the state of Kentucky. Tornado exposures for each U.S. census block group (CBG) were calculated by utilizing spatial analysis methods such as kernel density estimation and zonal statistics. Tornadoes between 1950 and 2022 were utilized to calculate tornado density values as a surrogate variable for tornado exposure. Since tornado density varies over space, a multiscale geographically weighted regression model was employed to consider spatial heterogeneity over the study region rather than using global regression such as ordinary least squares (OLS). The findings indicated that tornado density varied over the study area. The southwest portion of Kentucky and Jefferson County, which has low residential density, showed high levels of tornado exposure. In addition, relationships between the selected factors and tornado exposure also changed over space. For example, transportation costs as a percentage of income for the regional typical household was found to be strongly associated with tornado exposure in southwest Kentucky, whereas areas close to Jefferson County indicated an opposite association. The second part of this study involves the quantification of the tornado impact on roadways by using two different methods, and results were mapped. Although in both methods the same regions were found to be impacted, the second method highlighted the central CBGs rather than the peripheries. Information gathered by such an investigation can assist authorities in identifying vulnerable regions from both transportation network and community perspectives. From tornado debris handling to community preparedness, this type of work has the potential to inform sustainability-focused plans and policies in the state of Kentucky.

     
    more » « less
  5. This paper presents the results of a community survey that was designed to better understand the effects of permafrost degradation and coastal erosion on civil infrastructure. Observations were collected from residents in four Arctic coastal communities: Point Lay, Wainwright, Utqiaġvik, and Kaktovik. All four communities are underlain by continuous ice-rich permafrost with varying degrees of degradation and coastal erosion. The types, locations, and periods of observed permafrost thaw and coastal erosion were elicited. Survey participants also reported the types of civil infrastructure being affected by permafrost degradation and coastal erosion and any damage to residential buildings. Most survey participants reported that coastal erosion has been occurring for a longer period than permafrost thaw. Surface water ponding, ground surface collapse, and differential ground settlement are the three types of changes in ground surface manifested by permafrost degradation that are most frequently reported by the participants, while houses are reported as the most affected type of infrastructure in the Arctic coastal communities. Wall cracking and house tilting are the most commonly reported types of residential building damage. The effects of permafrost degradation and coastal erosion on civil infrastructure vary between communities. Locations of observed permafrost degradation and coastal erosion collected from all survey participants in each community were stacked using heatmap data visualization. The heatmaps constructed using the community survey data are reasonably consistent with modeled data synthesized from the scientific literature. This study shows a useful approach to coproduce knowledge with Arctic residents to identify locations of permafrost thaw and coastal erosion at higher spatial resolution as well as the types of infrastructure damage of most concern to Arctic residents. 
    more » « less