This dataset presents the results of a community survey that was designed to better understand the effects of permafrost degradation and coastal erosion on civil infrastructure. Observations were collected from residents in four Arctic coastal communities: Point Lay, Wainwright, Utqiaġvik, and Kaktovik. There are three categories of questions in this survey: permafrost degradation, coastal erosion, and infrastructure damage and repair. The participants identified changes in ground surface manifested by permafrost degradation in and around their communities. The options provided in the questionnaire included surface water ponding, sinkholes, ground surface collapse, differential ground settlement along roads and gravel pads, and others. The periods during which these changes have been happening were also recorded; the options include less than 6 months, 0.5–1 year, 1–3 years, 3–5 years, 5–10 years, and greater than 10 years. Participants also indicated the infrastructure types affected by permafrost degradation. The options include houses, runways, schools, ice cellars, water and sewer lines, and others. Effects of permafrost degradation on residential buildings, buried pipelines, utilidors, and roads were reported in the survey. Detailed information such as damage type, damage location, repair method, and effectiveness of repair methods was also recorded. For the questions related to coastal erosion, participants identified events of coastal erosion, periods during which coastal erosion has been happening, types of civil infrastructure affected, and types of erosion control measures implemented and their effectiveness. Participants were able to provide their plans if permafrost degradation and coastal erosion continue to happen. They identified the locations of permafrost degradation and coastal erosion on provided maps with three different scales of approximately 600 km, 40 km, and 8 km.
more »
« less
Understanding Effects of Permafrost Degradation and Coastal Erosion on Civil Infrastructure in Arctic Coastal Villages: A Community Survey and Knowledge Co-Production
This paper presents the results of a community survey that was designed to better understand the effects of permafrost degradation and coastal erosion on civil infrastructure. Observations were collected from residents in four Arctic coastal communities: Point Lay, Wainwright, Utqiaġvik, and Kaktovik. All four communities are underlain by continuous ice-rich permafrost with varying degrees of degradation and coastal erosion. The types, locations, and periods of observed permafrost thaw and coastal erosion were elicited. Survey participants also reported the types of civil infrastructure being affected by permafrost degradation and coastal erosion and any damage to residential buildings. Most survey participants reported that coastal erosion has been occurring for a longer period than permafrost thaw. Surface water ponding, ground surface collapse, and differential ground settlement are the three types of changes in ground surface manifested by permafrost degradation that are most frequently reported by the participants, while houses are reported as the most affected type of infrastructure in the Arctic coastal communities. Wall cracking and house tilting are the most commonly reported types of residential building damage. The effects of permafrost degradation and coastal erosion on civil infrastructure vary between communities. Locations of observed permafrost degradation and coastal erosion collected from all survey participants in each community were stacked using heatmap data visualization. The heatmaps constructed using the community survey data are reasonably consistent with modeled data synthesized from the scientific literature. This study shows a useful approach to coproduce knowledge with Arctic residents to identify locations of permafrost thaw and coastal erosion at higher spatial resolution as well as the types of infrastructure damage of most concern to Arctic residents.
more »
« less
- PAR ID:
- 10318969
- Date Published:
- Journal Name:
- Journal of Marine Science and Engineering
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2077-1312
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The thawing of permafrost in the Arctic has led to an increase in coastal land loss, flooding, and ground subsidence, seriously threatening civil infrastructure and coastal communities. However, a lack of tools for synthetic hazard assessment of the Arctic coast has hindered effective response measures. We developed a holistic framework, the Arctic Coastal Hazard Index (ACHI), to assess the vulnerability of Arctic coasts to permafrost thawing, coastal erosion, and coastal flooding. We quantified the coastal permafrost thaw potential (PTP) through regional assessment of thaw subsidence using ground settlement index. The calculations of the ground settlement index involve utilizing projections of permafrost conditions, including future regional mean annual ground temperature, active layer thickness, and talik thickness. The predicted thaw subsidence was validated through a comparison with observed long-term subsidence data. The ACHI incorporates the PTP into seven physical and ecological variables for coastal hazard assessment: shoreline type, habitat, relief, wind exposure, wave exposure, surge potential, and sea-level rise. The coastal hazard assessment was conducted for each 1 km2coastline of North Slope Borough, Alaska in the 2060s under the Representative Concentration Pathway 4.5 and 8.5 forcing scenarios. The areas that are prone to coastal hazards were identified by mapping the distribution pattern of the ACHI. The calculated coastal hazards potential was subjected to validation by comparing it with the observed and historical long-term coastal erosion mean rates. This framework for Arctic coastal assessment may assist policy and decision-making for adaptation, mitigation strategies, and civil infrastructure planning.more » « less
-
Arctic shorelines are vulnerable to climate change impacts as sea level rises, permafrost thaws, storms intensify, and sea ice thins. Seventy-five years of aerial and satellite observations have established coastal erosion as an increasing Arctic hazard. However, other hazards at play—for instance, the cumulative impact that sea-level rise and permafrost thaw subsidence will have on permafrost shorelines—have received less attention, preventing assessments of these processes’ impacts compared to and combined with coastal erosion. Alaska’s Arctic Coastal Plain (ACP) is ideal for such assessments because of the high-density observations of topography, coastal retreat rates, and permafrost characteristics, and importance to Indigenous communities and oilfield infrastructure. Here, we produce 21st-century projections of Arctic shoreline position that include erosion, permafrost subsidence, and sea-level rise. Focusing on the ACP, we merge 5 m topography, satellite-derived coastal lake depth estimates, and empirical assessments of land subsidence due to permafrost thaw with projections of coastal erosion and sea-level rise for medium and high emissions scenarios from the Intergovernmental Panel on Climate Change’s AR6 Report. We find that by 2100, erosion and inundation will together transform the ACP, leading to 6-8x more land loss than coastal erosion alone and disturbing 8-11x more organic carbon. Without mitigating measures, by 2100, coastal change could damage 40 to 65% of infrastructure in present-day ACP coastal villages and 10 to 20% of oilfield infrastructure. Our findings highlight the risks that compounding climate hazards pose to coastal communities and underscore the need for adaptive planning for Arctic coastlines in the 21st century.more » « less
-
Abstract. Permafrost degradation in Arctic lowlands is a critical geomorphic process, increasingly driven by climate warming and infrastructure development. This study applies an integrated geophysical and surveying approach – Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), and thaw probing – to characterize near-surface permafrost variability across four land use types in Utqiaġvik, Alaska: gravel road, snow fence, residential building and undisturbed tundra. Results reveal pronounced heterogeneity in thaw depths (0.2 to >1 m) and ice content, shaped by both natural features such as ice wedges and frost heave and anthropogenic disturbances. Roads and snow fences altered surface drainage and snow accumulation, promoting differential thaw, deeper active layers, and localized ground deformation. Buildings in permafrost regions alter the local thermal regime through multiple interacting factors – for example, solar radiation, thermal leakage, snow cover dynamics, and surface disturbance – among others. ERT identified high-resistivity zones (>1,000 Ω·m) interpreted as ice-rich permafrost and low-resistivity features (<5 Ω·m) likely associated with cryopegs or thaw zones. GPR delineated subsurface stratigraphy and supported interpretation of ice-rich layers and permafrost features. These findings underscore the strong spatial coupling between surface infrastructure and subsurface thermal and hydrological regimes in ice-rich permafrost. Geophysical methods revealed subsurface features and thaw depth variations across different land use types in Utqiaġvik, highlighting how infrastructure alters permafrost conditions. These findings support localized assessment of ground stability in Arctic environments.more » « less
-
Abstract Permafrost thaw and thermokarst development pose urgent challenges to Arctic communities, threatening infrastructure and essential services. This study examines the reciprocal impacts of permafrost degradation and infrastructure in Point Lay (Kali), Alaska, drawing on field data from ∼60 boreholes, measured and modeled ground temperature records, remote sensing analysis, and community interviews. Field campaigns from 2022–2024 reveal widespread thermokarst development and ground subsidence driven by the thaw of ice-rich permafrost. Borehole analysis confirms excess-ice contents averaging ∼40%, with syngenetic ice wedges extending over 12 m deep. Measured and modeled ground temperature data indicate a warming trend, with increasing mean annual ground temperatures and active layer thickness (ALT). Since 1949, modeled ALTs have generally deepened, with a marked shift toward consistently thicker ALTs in the 21st century. Remote sensing shows ice wedge thermokarst expanded from <5% in 1949 to >60% in developed areas by 2019, with thaw rates increasing tenfold between 1974 and 2019. In contrast, adjacent, undisturbed tundra exhibited more consistent thermokarst expansion (∼0.2% yr−1), underscoring the amplifying role of infrastructure, surface disturbance, and climate change. Community interviews reveal the lived consequences of permafrost degradation, including structural damage to homes, failing utilities, and growing dependence on alternative water and wastewater strategies. Engineering recommendations include deeper pile foundations, targeted ice wedge stabilization, aboveground utilities, enhanced snow management strategies, and improved drainage to mitigate ongoing infrastructure issues. As climate change accelerates permafrost thaw across the Arctic, this study highlights the need for integrated, community-driven adaptation strategies that blend geocryological research, engineering solutions, and local and Indigenous knowledge.more » « less
An official website of the United States government

