skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Jamming-Resilient LiDAR based on Photonic Blind-Source Separation
We propose a system that cancels LiDAR interference signals in real time. This system uses blind source separation to separate signals in the same bandwidth, and is compatible with electro-optical analog circuitry.  more » « less
Award ID(s):
2128608
PAR ID:
10450305
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Optics and Laser Science
Page Range / eLocation ID:
JW5A.47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose and experimentally demonstrate an optical pulse sampling method for photonic blind source separation. The photonic system processes and separates wideband signals based on the statistical information of the mixed signals, and thus the sampling frequency can be orders of magnitude lower than the bandwidth of the signals. The ultra-fast optical pulses collect samples of the signals at very low sampling rates, and each sample is short enough to maintain the statistical properties of the signals. The low sampling frequency reduces the workloads of the analog to digital conversion and digital signal processing systems. In the meantime, the short pulse sampling maintains the accuracy of the sampled signals, so the statistical properties of the under-sampled signals are the same as the statistical properties of the original signals. The linear power range measurement shows that the sampling system with ultra-narrow optical pulse achieves a 30dB power dynamic range. 
    more » « less
  2. Symbolic planning techniques rely on abstract information about a continuous system to design a discrete planner to satisfy desired high‐level objectives. However, applying the generated discrete commands of the discrete planner to the original system may face several challenges, including real‐time implementation, preserving the properties of high‐level objectives in the continuous domain, and issues such as discontinuity in control signals that may physically harm the system. To address these issues and challenges, the authors proposed a novel hybrid control structure for systems with non‐linear multi‐affine dynamics over rectangular partitions. In the proposed framework, a discrete planner can be separately designed to achieve high‐level specifications. Then, the proposed hybrid controller generates jumpless continuous control signals to drive the system over the partitioned space executing the discrete commands of the planner. The hybrid controller generates continuous signals in real‐time while respecting the dynamics of the system and preserving the desired objectives of the high‐level plan. The design process is described in detail and the existence and uniqueness of the proposed solution are investigated. Finally, several case studies are provided to verify the effectiveness of the developed technique. 
    more » « less
  3. We demonstrate the use of a dual comb photonic system for downconversion and disambiguation of RF signals ranging from 4.3 GHz to 17.3 GHz. Our system has future potential for miniaturization, a key for deployment in real-world applications. 
    more » « less
  4. Abstract Cells make decisions through their communication with other cells and receiving signals from their environment. Using single-cell transcriptomics, computational tools have been developed to infer cell–cell communication through ligands and receptors. However, the existing methods only deal with signals sent by the measured cells in the data, the received signals from the external system are missing in the inference. Here, we present exFINDER, a method that identifies such external signals received by the cells in the single-cell transcriptomics datasets by utilizing the prior knowledge of signaling pathways. In particular, exFINDER can uncover external signals that activate the given target genes, infer the external signal-target signaling network (exSigNet), and perform quantitative analysis on exSigNets. The applications of exFINDER to scRNA-seq datasets from different species demonstrate the accuracy and robustness of identifying external signals, revealing critical transition-related signaling activities, inferring critical external signals and targets, clustering signal-target paths, and evaluating relevant biological events. Overall, exFINDER can be applied to scRNA-seq data to reveal the external signal-associated activities and maybe novel cells that send such signals. 
    more » « less
  5. Abstract Chemical defense systems involving tryptophan-derived secondary metabolites (TDSMs) and salicylic acid (SA) are induced by general nonself signals and pathogen signals, respectively, in Arabidopsis thaliana. Whether and how these chemical defense systems are connected and balanced is largely unknown. In this study, we identified the AVRRPT2-INDUCED GENE2A (AIG2A) and AIG2B genes as gatekeepers that prevent activation of SA defense systems by TDSMs. These genes also were identified as important contributors to natural variation in disease resistance among A. thaliana natural accessions. The loss of AIG2A and AIG2B function leads to upregulation of both SA and TDSM defense systems. Suppressor screens and genetic analysis revealed that a functional TDSM system is required for the upregulation of the SA pathway in the absence of AIG2A and AIG2B, but not vice versa. Furthermore, the AIG2A and AIG2B genes are co-induced with TDSM biosynthesis genes by general pathogen elicitors and nonself signals, thereby functioning as a feedback control of the TDSM defense system, as well as limiting activation of the SA defense system by TDSMs. Thus, this study uncovers an AIG2A- and AIG2B-mediated mechanism that fine-tunes and balances SA and TDSM chemical defense systems in response to nonpathogenic and pathogenic microbes. 
    more » « less