skip to main content


Title: The effect of Oceanic South Atlantic Convergence Zone episodes on regional SST anomalies: the roles of heat fluxes and upper-ocean dynamics
Abstract The South Atlantic Convergence Zone (SACZ) is an atmospheric system occurring in austral summer on the South America continent and sometimes extending over the adjacent South Atlantic. It is characterized by a persistent and very large, northwest-southeast-oriented, cloud band. Its presence over the ocean causes sea surface cooling that some past studies indicated as being produced by a decrease of incoming solar heat flux induced by the extensive cloud cover. Here we investigate ocean–atmosphere interaction processes in the Southwestern Atlantic Ocean (SWA) during SACZ oceanic episodes, as well as the resulting modulations occurring in the oceanic mixed layer and their possible feedbacks on the marine atmospheric boundary layer. Our main interests and novel results are on verifying how the oceanic SACZ acts on dynamic and thermodynamic mechanisms and contributes to the sea surface thermal balance in that region. In our oceanic SACZ episodes simulations we confirm an ocean surface cooling. Model results indicate that surface atmospheric circulation and the presence of an extensive cloud cover band over the SWA promote sea surface cooling via a combined effect of dynamic and thermodynamic mechanisms, which are of the same order of magnitude. The sea surface temperature (SST) decreases in regions underneath oceanic SACZ positions, near Southeast Brazilian coast, in the South Brazil Bight (SBB) and offshore. This cooling is the result of a complex combination of factors caused by the decrease of solar shortwave radiation reaching the sea surface and the reduction of horizontal heat advection in the Brazil Current (BC) region. The weakened southward BC and adjacent offshore region heat advection seems to be associated with the surface atmospheric circulation caused by oceanic SACZ episodes, which rotate the surface wind and strengthen cyclonic oceanic mesoscale eddy. Another singular feature found in this study is the presence of an atmospheric cyclonic vortex Southwest of the SACZ (CVSS), both at the surface and aloft at 850 hPa near 24°S and 45°W. The CVSS induces an SST decrease southwestward from the SACZ position by inducing divergent Ekman transport and consequent offshore upwelling. This shows that the dynamical effects of atmospheric surface circulation associated with the oceanic SACZ are not restricted only to the region underneath the cloud band, but that they extend southwestward where the CVSS presence supports the oceanic SACZ convective activity and concomitantly modifies the ocean dynamics. Therefore, the changes produced in the oceanic dynamics by these SACZ events may be important to many areas of scientific and applied climate research. For example, episodes of oceanic SACZ may influence the pathways of pollutants as well as fish larvae dispersion in the region.  more » « less
Award ID(s):
2022868
NSF-PAR ID:
10450514
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Climate Dynamics
Volume:
59
Issue:
7-8
ISSN:
0930-7575
Page Range / eLocation ID:
2041 to 2065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean–atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO2) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO2, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO2source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m−2day−1, averaged over the sampling period. The CO2transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean–atmosphere fluxes. The ocean–atmosphere CO2, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean–atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere.

     
    more » « less
  2. The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific ( r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux ( Q T ; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward Q T and begins to cool the ocean. Warm SSTAs co-occur with cyclonic low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions. 
    more » « less
  3. Abstract

    The northeastern Pacific climate system features an extensive low-cloud deck off California on the southeastern flank of the subtropical high that accompanies intense northeasterly trades and relatively low sea surface temperatures (SSTs). This study assesses climatological impacts of the low-cloud deck and their seasonal differences by regionally turning on and off the low-cloud radiative effect in a fully coupled atmosphere–ocean model. The simulations demonstrate that the cloud radiative effect causes a local SST decrease of up to 3°C on an annual average with the response extending southwestward with intensified trade winds, indicative of the wind–evaporation–SST (WES) feedback. This nonlocal wind response is strong in summer, when the SST decrease peaks due to increased shortwave cooling, and persists into autumn. In these seasons when the background SST is high, the lowered SST suppresses deep-convective precipitation that would otherwise occur in the absence of the low-cloud deck. The resultant anomalous diabatic cooling induces a surface anticyclonic response with the intensified trades that promote the WES feedback. Such seasonal enhancement of the atmospheric response does not occur without air–sea couplings. The enhanced trades accompany intensified upper-tropospheric westerlies, strengthening the vertical wind shear that, together with the lowered SST, acts to shield Hawaii from powerful hurricanes. On the basin scale, the anticyclonic surface wind response accelerates the North Pacific subtropical ocean gyre to speed up the Kuroshio by as much as 30%. SST thereby increases along the Kuroshio and its extension, intensifying upward turbulent heat fluxes from the ocean to increase precipitation.

     
    more » « less
  4. Abstract

    Interannual sea surface temperature (SST) variations in the tropical Atlantic Ocean lead to anomalous atmospheric circulation and precipitation patterns with important ecological and socioeconomic consequences for the semiarid regions of sub-Saharan Africa and northeast Brazil. This interannual SST variability is characterized by three modes: an Atlantic meridional mode featuring an anomalous cross-equatorial SST gradient that peaks in boreal spring; an Atlantic zonal mode (Atlantic Niño mode) with SST anomalies in the eastern equatorial Atlantic cold tongue region that peaks in boreal summer; and a second zonal mode of variability with eastern equatorial SST anomalies peaking in boreal winter. Here we investigate the extent to which there is any seasonality in the relationship between equatorial warm water recharge and the development of eastern equatorial Atlantic SST anomalies. Seasonally stratified cross-correlation analysis between eastern equatorial Atlantic SST anomalies and equatorial heat content anomalies (evaluated using warm water volume and sea surface height) indicate that while equatorial heat content changes do occasionally play a role in the development of boreal summer Atlantic zonal mode events, they contribute more consistently to Atlantic Niño II, boreal winter events. Event and composite analysis of ocean adjustment with a shallow water model suggest that the warm water volume anomalies originate mainly from the off-equatorial northwestern Atlantic, in agreement with previous studies linking them to anomalous wind stress curl associated with the Atlantic meridional mode.

     
    more » « less
  5. Abstract

    Biomass burning (BB) aerosols exert a strong surface cooling effect over the southeast Atlantic (SEA) via aerosol‐radiation and aerosol‐cloud interactions. The reduction of the sea surface temperature (SST) can trigger the SST‐low cloud feedback. Whether this feedback can amplify the surface cooling effect is examined. The modeling results from the Community Earth System Model version 2 (CESM2) demonstrate that counterintuitively the cloud radiative effect (CRE) caused by the BB aerosols is weaker if SST‐low cloud feedback is considered compared to fixed‐SST simulation (−2.99 W m−2vs. −4.79 W m−2). This is caused by (a) stronger sea breeze due to larger sea‐land temperature contrast causing less smoke transport over SEA and (b) less moisture supply from surface due to colder SST. Changes in SST also lead to counterclockwise rotation of ocean circulation anomalies. Consequently, the excess heat transport from the equator reverses the direction of SST‐cloud feedback in this region.

     
    more » « less