skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: EDANSA-2019: The Ecoacoustic Dataset from Arctic North Slope Alaska
We are sharing the Ecoacoustic Dataset from Arctic North Slope Alaska (EDANSA-2019), a dataset with audio samples collected from the area of 9000 square miles throughout the 2019 summer season on the North Slope of Alaska and neighboring regions.</p> There are over 27 hours of labeled data according to 28 tags with enough instances of 9 important environmental classes to train baseline convolutional recognizers.</p> Please see the following GitHub page for the accompanying publication, updates about the dataset, and baseline code: https://github.com/speechLabBcCuny/EDANSA-2019 </p>  more » « less
Award ID(s):
1839185
PAR ID:
10450603
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
Ecoacoustics audio dataset labeled data convolutional neural network biophony anthrophony geophony
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The arctic is warming at three times the rate of the global average, affecting the habitat and lifecycles of migratory species that reproduce there, like birds and caribou. Ecoacoustic monitoring can help efficiently track changes in animal phenology and behavior over large areas so that the impacts of climate change on these species can be better understood and potentially mitigated. We introduce here the Ecoacoustic Dataset from Arctic North Slope Alaska (EDANSA-2019), a dataset collected by a network of 100 autonomous recording units covering an area of 9000 square miles over the course of the 2019 summer season on the North Slope of Alaska and neighboring regions. We labeled over 27 hours of this dataset according to 28 tags with enough instances of 9 important environmental classes to train baseline convolutional recognizers. We are releasing this dataset and the corresponding baseline to the community to accelerate the recognition of these sounds and facilitate automated analyses of large-scale ecoacoustic databases. 
    more » « less
  2. null (Ed.)
    Abstract Detrital zircon U-Pb geochronology is one of the most common methods used to constrain the provenance of ancient sedimentary systems. Yet, its efficacy for precisely constraining paleogeographic reconstructions is often complicated by geological, analytical, and statistical uncertainties. To test the utility of this technique for reconstructing complex, margin-parallel terrane displacements, we compiled new and previously published U-Pb detrital zircon data (n = 7924; 70 samples) from Neoproterozoic–Cambrian marine sandstone-bearing units across the Porcupine shear zone of northern Yukon and Alaska, which separates the North Slope subterrane of Arctic Alaska from northwestern Laurentia (Yukon block). Contrasting tectonic models for the North Slope subterrane indicate it originated either near its current position as an autochthonous continuation of the Yukon block or from a position adjacent to the northeastern Laurentian margin prior to >1000 km of Paleozoic–Mesozoic translation. Our statistical results demonstrate that zircon U-Pb age distributions from the North Slope subterrane are consistently distinct from the Yukon block, thereby supporting a model of continent-scale strike-slip displacement along the Arctic margin of North America. Further examination of this dataset highlights important pitfalls associated with common methodological approaches using small sample sizes and reveals challenges in relying solely on detrital zircon age spectra for testing models of terranes displaced along the same continental margin from which they originated. Nevertheless, large-n detrital zircon datasets interpreted within a robust geologic framework can be effective for evaluating translation across complex tectonic boundaries. 
    more » « less
  3. This data set contains a classification of the North Slope, Alaska for drained lake basins (DLBs) based on Landsat-8 imagery of the years 2014-2019 and Arctic Digital Elevation Model (ArcticDEM) data. Drained lake basins (DLBs) are often the most common landforms in lowland permafrost regions in the Arctic (50% to 75% of the landscape). However, detailed assessments of DLB distribution and abundance are limited. This data set is based on a novel and scalable remote sensing-based approach to identify DLBs in lowland permafrost regions, using the North Slope of Alaska as a case study. The data set was validated against several prior sub-regional scale datasets and manually classified points. The study area covers greater than 71,000 square kilometers (km2), including a greater than 39,000 km2 area not previously covered in existing DLB data sets. Within the data set, three classes are present: DLB/ambiguous/noDLB. Areas classified as ambiguous could not be classified as DLB or noDLB with sufficient certainty. Users may decide on a case by case basis if they wish to use the conservative estimate of DLB area, therefore omitting areas classified as ambiguous, or to use all three classes. 
    more » « less
  4. This dataset contains ground penetrating radar (GPR) data acquired between April 27 and 28, 2019, on two drained lake basins (DLBs) [Three Creatures Basin and Deep Basin] and four lakes [Independent Fox Lake, INI01 Lake, INI04 Lake, and Lonely Wolf Lake] at Inigok region in the North Slope of Alaska. The measurements were made using Malå ProEx 800 megahertz (MHz) (GuidelineGeo, Sundbyberg, Sweden) antennas using common offset configuration. Raw GPR data of eight transects are provided in the .RAD3 format, along with the corresponding acquisition parameters (.RAD) and Global Positioning System (GPS) coordinates (.COR) files. A spreadsheet with basic information and a Keyhole Markup Language (KML) file indicating the location of each transect are also provided. This dataset can be used to estimate snow properties. 
    more » « less
  5. Abstract Some of the largest climatic changes in the Arctic have been observed in Alaska and the surrounding marginal seas. Near-surface air temperature (T2m), precipitation ( P ), snowfall, and sea ice changes have been previously documented, often in disparate studies. Here, we provide an updated, long-term trend analysis (1957–2021; n = 65 years) of such parameters in ERA5, NOAA U.S. Climate Gridded Dataset (NClimGrid), NOAA National Centers for Environmental Information (NCEI) Alaska climate division, and composite sea ice products preceding the upcoming Fifth National Climate Assessment (NCA5) and other near-future climate reports. In the past half century, annual T2m has broadly increased across Alaska, and during winter, spring, and autumn on the North Slope and North Panhandle (T2m > 0.50°C decade −1 ). Precipitation has also increased across climate divisions and appears strongly interrelated with temperature–sea ice feedbacks on the North Slope, specifically with increased (decreased) open water (sea ice extent). Snowfall equivalent (SFE) has decreased in autumn and spring, perhaps aligned with a regime transition of snow to rain, while winter SFE has broadly increased across the state. Sea ice decline and melt-season lengthening also have a pronounced signal around Alaska, with the largest trends in these parameters found in the Beaufort Sea. Alaska’s climatic changes are also placed in context against regional and contiguous U.S. air temperature trends and show ∼50% greater warming in Alaska relative to the lower-48 states. Alaska T2m increases also exceed those of any contiguous U.S. subregion, positioning Alaska at the forefront of U.S. climate warming. Significance Statement This study produces an updated, long-term trend analysis (1957–2021) of key Alaska climate parameters, including air temperature, precipitation (including snowfall equivalent), and sea ice, to inform upcoming climate assessment reports, including the Fifth National Climate Assessment (NCA5) scheduled for publication in 2023. Key findings include widespread annual and seasonal warming with increased precipitation across much of the state. Winter snowfall has broadly increased, but spring and autumn snowfalls have decreased as rainfall increased. Autumn warming and precipitation increases over the North Slope, in particular, appear related to decreased sea ice coverage in the Beaufort Sea and Chukchi Seas. These trends may result from interrelated processes that accelerate Alaska climate changes relative to those of the contiguous United States. 
    more » « less