The ability to record, stimulate, and modify brains of living animals would unlock numerous research opportunities and create potential clinical interventions, but it is difficult to interface with a living neural network without damaging it. We previously reported a novel approach to building neural interfaces, namely: genetically programming cells to build artificial structures to modify the electrical properties of neurons in situ, which opens up the possibility of modifying neural circuits in living animals without surgery. However, the spatiotemporal resolution, efficiency, and biocompatibility of this approach were still limited and lacked selectivity on cell membrane. Here, we demonstrate an approach using genetically-targeted photosensitizers to instruct living cells to synthesize functional materials directly on the plasma membrane under the control of light. Polymers synthesized by this approach were selectively deposited on the membrane of targeted live neurons. This platform can be readily extended to incorporate a broad range of light-controlled reactions onto specific cells, which may enable researchers to grow seamless, dynamic interfaces directly in living animals.
more »
« less
In situ genetically targeted chemical assembly of polymers on living neuronal membranes
Multicellular biological systems, most notably living neural networks, exhibit highly complex physical organization properties that pose challenges for building cell-specific and biocompatible interfaces. We developed a novel approach to genetically program cells to chemically assemble artificial structures that modify the electrical properties of neurons in situ, opening up the possibility of minimally-invasive cell-specific interfaces with neural circuits in living animals. However, the efficiency and biocompatibility of this approach were challenged by limited membrane targeting of the constructed material. Here, we report a method with significantly improved molecular construct properties, which expresses highly localized enzymes targeted to the plasma membrane of primary neurons with minimal intracellular retention. Polymers synthesized in situ by this approach form dense clusters on the targeted cell membrane, and neurons remain viable after polymerization. This platform can be readily extended to incorporate a broad range of materials onto the surface membranes of specific cells within complex tissues, using chemistry that may further enable the next generation of interfaces with living biological systems.
more »
« less
- Award ID(s):
- 2037164
- PAR ID:
- 10450650
- Date Published:
- Journal Name:
- bioRxiv
- ISSN:
- 2692-8205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Genetically targeted chemical assembly of functional materials in living cells, tissues, and animalsnull (Ed.)The structural and functional complexity of multicellular biological systems, such as the brain, are beyond the reach of human design or assembly capabilities. Cells in living organisms may be recruited to construct synthetic materials or structures if treated as anatomically defined compartments for specific chemistry, harnessing biology for the assembly of complex functional structures. By integrating engineered-enzyme targeting and polymer chemistry, we genetically instructed specific living neurons to guide chemical synthesis of electrically functional (conductive or insulating) polymers at the plasma membrane. Electrophysiological and behavioral analyses confirmed that rationally designed, genetically targeted assembly of functional polymers not only preserved neuronal viability but also achieved remodeling of membrane properties and modulated cell type–specific behaviors in freely moving animals. This approach may enable the creation of diverse, complex, and functional structures and materials within living systems.more » « less
-
Cell type-specific interfaces within living animals will be invaluable for achieving communication with identifiable cells over the long term, enabling applications across many scientific and medical fields. However, biological tissues exhibit complex and dynamic organization properties that pose serious challenges for chronic cell-specific interfacing. A new technology, combining chemistry and molecular biology, has emerged to address this challenge: genetically targeted chemical assembly (GTCA), in which specific cells are genetically programmed (even in wild-type or non-transgenic animals, including mammals) to chemically construct non-biological structures. Here, we discuss recent progress in genetically targeted construction of materials and outline opportunities that may expand the GTCA toolbox, including specific chemical processes involving novel monomers, catalysts and reaction regimes both de cellula (from the cell) and ad cellula (towards the cell); different GTCA-compatible reaction conditions with a focus on light-based patterning; and potential applications of GTCA in research and clinical settings.more » « less
-
Abstract Cell organelles feature characteristic lipid compositions that lead to differences in membrane properties. In living cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to membrane packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells, so it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out membrane packing of individual cellular organelles. The set of Organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes and Golgi compartments with high specificity, while retaining the spectral resolution needed to detect biological changes in membrane packing. We show that ratiometric imaging with OTL can resolve membrane heterogeneity within organelles, as well as changes in membrane packing resulting from inhibition of lipid trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application to interrogating lipid dysregulation.more » « less
-
Abstract The rational design of materials with cell‐selective membrane activity is an effective strategy for the development of targeted molecular imaging and therapy. Here we report a new class of cationic multidomain peptides (MDPs) that can undergo enzyme‐mediated molecular transformation followed by supramolecular assembly to form nanofibers in which cationic clusters are presented on a rigid β‐sheet backbone. This structural transformation, which is induced by cells overexpressing the specific enzymes, led to a shift in the membrane perturbation potential of the MDPs, and consequently enhanced cell uptake and drug delivery efficacy. We envision the directed self‐assembly based on modularly designed MDPs as a highly promising approach to generate dynamic supramolecular nanomaterials with emerging membrane activity for a range of disease targeted molecular imaging and therapy applications.more » « less
An official website of the United States government

